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Model theory

I We fix a complete countable first-order theory T in a language
L.

I Let M be a monster model of T (i.e. κ∗-saturated and
κ∗-homogeneous for some sufficiently large cardinal κ∗).

I Given a set A ⊆M, we let S (A) denote the space of types
over A (i.e. the Stone space of ultrafilters on the Boolean
algebra of A-definable subsets of M).



Stability

Definition

1. We say that T encodes a linear order if there is a formula
φ (x̄ , ȳ) ∈ L and (āi : i ∈ ω) in M such that M |= φ (āi , āj) ⇔
i < j .

2. A theory T is stable if it cannot encode a linear order.
3. Equivalently, for some cardinal κ we have

sup {|S (M)| : M |= T , |M| = κ} = κ.

I Examples of stable first-order theories: equivalence relations,
modules, algebraically closed fields, separably closed fields, free
groups, planar graphs.



Stability: indiscernible sequences and sets

Definition

1. (ai : i ∈ ω) is an indiscernible sequence over a set of
parameters B if tp (ai0 . . . ain/B) = tp (aj0 . . . ajn/B) for any
i0 < . . . < in and j0 < . . . < jn from ω.

2. (ai : i ∈ ω) is an indiscernible set over B if
tp (ai0 . . . ain/B) = tp

(
aσ(i0) . . . aσ(in)/B

)
for any σ ∈ S∞.

Fact
The following are equivalent:
1. T is stable.
2. Every indiscernible sequence is an indiscernible set.



Stability: limit types

Fact
If T is stable and (ai : i ∈ ω) is an indiscernible sequence, then for
any formula φ (x) ∈ L (M), the set {i :|= φ (ai )} is either finite or
cofinite.

Definition
For an indiscernible sequence ā = (ai : i ∈ ω) and a set of
parameters B , we let lim (ā/B), the limit type of ā over B , be the
set {φ (x) ∈ L (B) :|= φ (ai ) for all but finitely many i ∈ ω}.
In view of the fact, this is a consistent complete type.



Stability: the independence relation

Fact
The following are equivalent:
1. T is stable.
2. There is an independence relation |̂ on small subsets of M

(i.e. of cardinality < κ∗) satisfying certain natural axioms:
Aut (M)-invariance, finite character, symmetry, monotonicity,
base monotonicity, transitivity, extension, local character,
boundedness.

I In fact, if such a relation exists, then it is unique and
corresponds to Shelah’s non-forking — a canonically defined
way of producing “generic” extensions of types.

I Examples: linear independence in vector spaces, algebraic
independence in algebraically closed fields.



Stability: Morley sequences

Definition
A sequence (ai )i∈ω in M is a Morley sequence in a type p ∈ S (B)
if it is a sequence of realizations of p indiscernible over B and such
that moreover ai |̂ B a<i for all i ∈ ω.

Fact
In a stable theory, every type admits a Morley sequence
(Erdős-Rado + compactness + properties of forking independence).

I An important technical tool in the development of stability.
I Example: an infinite basis in a vector space is a Morley

sequence over ∅.



Stability: Canonical basis

A type p ∈ S (A) is stationary if it admits a unique global
non-forking extension.

Definition
In a stable theory, every stationary type has a canonical base — a
small set such that every automorphism of M fixing it fixes the
global non-forking extension of p.

I In fact, such a set is unique up to bi-definability, so we can
talk about the canonical base of a type, Cb (p).

I If we want every type to have a canonical base, we might have
to add imaginary elements for classes of definable equivalence
relations to the structure, i.e. working in Meq, but this is a
tame procedure.



I The definable closure of a set A ⊆M: dcl (A) =
{b ∈M : ∃φ (x) ∈ L (A) s.t. |= φ (b) ∧ |φ (x)| = 1}.

I The algebraic closure of a set A ⊆M: acl (A) =
{b ∈M : ∃φ (x) ∈ L (A) s.t. |= φ (b) ∧ |φ (x)| <∞}.

Fact
Every indiscernible sequence (ai )i∈ω is a Morley sequence over the
canonical base of its limit type, and this canonical base is equal to⋂

n∈ω dcl
eq (a≥n).



Exchangeable sequences of random variables

I Let (Ω,F , µ) be a probability space.
I Let X̄ = (Xi )i∈ω be a sequence of [0, 1]-valued random

variables on Ω (i.e. Xi : Ω→ [0, 1] is a measurable function).
I The sequence X̄ is exchangeable if

(Xi0 , . . . ,Xin)
d
= (X0, . . . ,Xn) for any i0 6= . . . 6= in and n ∈ ω.

I Example: A sequence of i.i.d. (independent, identically
distributed) random variables.

I Is the converse true? Yes, up to a “mixing”.



Classical de Finetti’s theorem

Definition
If A is a collection of random variables, let σ (A) ⊆ F denote the
minimal σ-subalgebra with respect to which every X ∈ A is
measurable.

Fact
[de Finetti] A sequence of random variables (Xi )i∈ω is exchangeable
if and only if it is i.i.d. over its tail σ-algebra T =

⋂
n∈ω σ (X≥n).

I It is a special case of the model-theoretic result above, but in
the sense of continuous logic.



Continuous logic

I Reference: Ben Yaacov, Berenstein, Henson, Usvyatsov “Model
theory for metric structures”.

I Every structure M is a complete metric space of bounded
diameter, with metric d .

I Signature:
I function symbols with given moduli of uniform continuity

(correspond to uniformly continuous functions from Mn to M),
I predicate symbols with given moduli of uniform continuity

(uniformly continuous functions from M to [0, 1]).

I Connectives: the set of all continuous functions from
[0, 1]→ [0, 1], or any subfamily which generates a dense
subset (e.g.

{
¬, x2 ,

·
–
}
).

I Quantifiers: sup for ∀, inf for ∃.
I This logic admits a compactness theorem, etc.



Stability in continuous logic

I Summary: everything is essentially the same as in the classical
case (Ben Yaacov, Usvyatsov “Continuous first-order logic and
local stability”).

I Of course, modulo some natural changes: cardinality is
replaced by the density character, in acl “finite” is replaced by
“compact”, some equivalences are replaced by the ability to
approximate uniformly, etc.

I Examples of stable continuous theories: (unit balls in)
infinite-dimensional Hilbert space, atomless probability
algebras, (atomless) random variables, Keisler randomization
of an arbitrary stable theory.



The theory of random variables

I Let (Ω,F , µ) be a probability space, and let
L1 ((Ω,F ;µ) , [0, 1]) be the space of [0, 1]-valued random
variables on it.

I We consider it as a continuous structure in the language
LRV =

{
0,¬, x2 ,

·
–
}

with the natural interpretation of the

connectives (e.g.
(
X
·
–Y
)

(ω) = X (ω)
·
–Y (ω)) and the

distance d (X ,Y ) = E [|X − Y |] =
´

Ω |X − Y | dµ.



The theory of random variables

I Consider the following continuous theory RV in the language
LRV, we write 1 as an abbreviation for ¬0, E (x) for d (0, x)

and x ∧ y for x
·
–
(
x
·
– y
)
:

I E (x) = E
(
x
·
– y
)

+ E (y ∧ x)

I E (1) = 1
I d (x , y) = E

(
x
·
– y
)

+ E
(
y
·
– x
)

I τ = 0 for every term τ which can be deduced in the
propositional continuous logic.

I The theory ARV is defined by adding:

I Atomlessness: infy
(
E (y ∧ ¬y) ∨

∣∣∣E (y ∧ x)− E(x)
2

∣∣∣) = 0.



The theory of random variables: basic properties

Fact
[Ben Yaacov, “On theories of random variables”]
1. M |= RV ⇔ it is isomorphic to L1 (Ω, [0, 1]) for some

probability space (Ω,F , µ).
2. M |= ARV ⇔ it is isomorphic L1 (Ω, [0, 1]) for some atomless

probability space (Ω,F , µ).
3. ARV is the model completion of the universal theory RV (so

every probability space embeds into a model of ARV).
4. ARV eliminates quantifiers, and two tuples have the same type

over a set A ⊆ M if and only if they have the same joint
conditional distribution as random variables over σ (A).



The theory of random variables: stability

Fact
[Ben Yaacov, “On theories of random variables”]
1. ARV is ℵ0-categorical (i.e., there is a unique separable model)

and complete.
2. ARV is stable (and in fact ℵ0-stable).
3. ARV eliminates imaginaries.
4. If M |= ARV and A ⊆ M, then

dcl (A) = acl (A) = L1 (σ (A) , [0, 1]) ⊆ M.
5. Model-theoretic independence coincides with probabilistic

independence: A |̂
B
C ⇔ P [X |σ (BC )] = P [X |σ (B)] for

every X ∈ σ (A). Moreover, every type is stationary.



Back to de Finetti

I As every model of RV embeds into a model of ARV, wlog our
sequence of random variables is from M |= ARV.

I Recall: In a stable theory, every indiscernible sequence is an
indiscernible set.

Corollary
[Ryll-Nardzewski] A sequence of random variables is exchangeable
iff it is contractable (i.e. Xi0 . . .Xin

d
= X0 . . .Xn for all

i0 < . . . < in).

I Recall: In a stable theory, every indiscernible sequence is a
Morley sequence over the definable tail closure.

Corollary
De Finetti’s theorem.



Multi-dimensional de Finetti

I A reformulation of de Finetti’s theorem:

Fact
(Xi )i∈ω is exchangeable iff there is a measurable function
f : [0, 1]2 → Ω and some i.i.d. [0, 1]-random variables α and
(ξi )i∈ω such that a.s. Xn = f (α, ξi ).

I f is not unique here, and we might have to extend the basic
probability space.



Multi-dimensional de Finetti

I So, 1-dimensional case was already folklore in stability theory.
I There is a multi-dimensional theory of exchangeable arrays in

probability.

Fact
[Aldous, Hoover] An array of random variables X = (Xi ,j) is
exchangeable iff there exist a measurable function f : [0, 1]4 → Ω
and some i.i.d. random variables α, ξi , ηj , ζi ,j such that a.s.
Xi ,j = f (α, ξi , ηj , ζi ,j).

I [Kallenberg] for n-dimensional case.
I Can also be reformulated in terms of independence over

certain “tail algebras”. We give a model-theoretic
generalization for arbitrary stable theories.



Indiscernible arrays

Definition
A (2-dimensional) array (ai ,j : i , j ∈ ω) is indiscernible if both the
sequence of rows and the sequence of columns are indiscernible.
Appear in [Hrushovski, Zilber, “Zariski geometries”] for recovering
groups and fields, and in the study of forking and dividing in simple
and NTP2 theories.



Model-theoretic multi-dimensional de Finetti

Theorem
Let T be stable, and let (ai ,j : i , j ∈ ω) be an indiscernible array.
Let:

I ri =
⋂

n∈ω dcl
eq (ai ,>n) and cj =

⋂
n∈ω dcl

eq (a>n,j) be the tail
closures of the i ’s row and the j ’s column, respectively.

I Let also r ′i =
⋂

n∈ω dcl
eq (ai ,>na>n,>n) and

c ′j =
⋂

n∈ω dcl
eq (a>n,ja>n,>n), i.e. we add the limit corner

closure as well.
Then, for any i , j ∈ ω we have ai ,j |̂ ric ′j

a 6=(i ,j), as well as

ai ,j |̂ r ′i cj
a 6=(i ,j).

I Also an appropriate generalization to n-dimensional array.



Directions

I Some questions remain:
I whether Cb

(
ai,j/a6=(i,j)

)
∈ dcleq

(
r ′i c
′
j

)
(as opposed to acleq,

true in probability algebras, unlikely in general),
I whether it is enough to take ci rjd in the base, where d is the

diagonal corner closure
⋂

n∈ω dcleq (a>n,>n).
I some connections to lovely pairs of lovely pairs.

I Non-commutative probability theory: no longer stable, no
model complete theory and no quantifier elimination, but there
is an appropriate notion of independence on quantifier-free
types.
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