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» Let F be a family of subsets of a set X.
» Foraset BC X, let FNnB={ANB:Aec F}.
» We say that B C X is shattered by F if F N B = 2B,

» Let the Vapnik-Chervonenkis dimension (VVC dimension) of F
be the largest integer n such that some subset of S of size n is
shattered by F (otherwise c0).

» Let mx(n) =max{|FNB|:BCS,|B|=n}.

» If the VC dimension of F is infinite, then 7z (n) = 2" for all n.
However,

Fact
[Sauer-Shelah lemma] If F has VC dimension < d, then for n > d

we have mx (n) < 3,4 (7) = O (n9).

» The bound is tight: consider all subsets of {1,...,n} of
cardinality less that d.
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Computational learning theory (PAC),
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computational geometry,
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functional analysis (Bourgain-Fremlin-Talagrand theory),
model theory (NIP),
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abstract topological dynamics (tame dynamical systems), ...
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X =R?, F = all convex n-gons. Then VC (F) =2n+1.
But: X = R?, F = all convex polygons. Then VC (F) = cc.
X =R, F = semialgebraic sets of bounded complexity. Then
VC (F) is finite.

Model theory gives a lot of new and more general examples
from outside of combinatorial real geometry (a bit later).
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The law of large numbers

» Let (X, 1) be a probability space.

» Given aset S C X and x1,...,x, € X, we define
AV (X1, X0 S) = 2SN {x1,. .., xn}]-

» For n € w, let 1" be the product measure on X".

Fact
(Weak law of large numbers) Let S C X be measurable and fix

€ > 0. Then for any n € w we have:

1
P (xe X" |Av(x1, ..., x0; S) —u(S)] >¢) < Inc? — 0 when n — oo.

> (i.e., with high probability, sampling on a tuple (x1,...,x)
selected at random gives a good estimate of the measure of S.)
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\VC-theorem

Fact
[VC theorem] Let (X, 1) be a probability space, and let F be a
family of subsets of X of finite VC-dimension such that:

1. Every S € F is measurable;
2. for each n, the function
fo (X1, .., %Xn) = supser |AV (X1,...,xn S) — 1 (S)] is a

measurable function from X" to R;

/

3. for each n, the function gn (X1,...,Xn, X}, ..., X)) =

sUpser |AV (X1, -« o, Xn; S) — AV (X, ..., x; S)| from X2" to R
is measurable.

Then for every ¢ > 0 and n € w we have:

2
1" (sup |AV (X1, ..., xn; S) — p(S)| > 5) < 8mx (n)exp (_nE) )
SeF 32
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VC-theorem and e-nets

» — 0 when n — oo (as 7z (n) is polynomially bounded by
Sauer-Shelah).

» Of course (1),(2) and (3) hold for any family of subsets of a
finite set X. Also if F is countable then (1) implies (2) and
(3).

» Consider X = wq, let B be the o-algebra generated by the
intervals, and define ;1 (A) = 1 if A contains an end segment of
X and 0 otherwise. Take F to be the family of intervals of X.
Then VC (F) = 2 but the VC-theorem does not hold for F.

» A subset A of X is called an e-net for F with respect to p if
ANS #0forall S € F with u(S) >e.

Fact

[e-nets] If (X, u) is a probability space and F is a family of
measurable subsets of X with VC (F) < d, then for any r > 1
there is a %—net for (X, F) with respect to i of size at most
Cdrnr, where C is an absolute constant.
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> As before, let F C 2X be given. Let Flg, denote
U{F N B : B a finite subset of X with |B| > 2}.

Definition

F is said to have a d-compression scheme if there is a compression
function x : Flgin — X9 and a finite set R of reconstruction
functions p : X9 — 2X such that for every f € Fls, we have:

1. range(k (f)) C dom (f),
2. f=p(k(f)) |dom(f) for at least one p € R.

» Existence of a compression scheme for F implies finite
VC-dimension.

» Problem [Warmuth]. Does every family F of finite
VC-dimension admit a compression scheme? (and if yes, does
it admit a VC (F)-compression scheme?)

» Turns out that combining model theory with some more results
from combinatorics gives a quite general result towards it.
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>

Let T be a complete first-order theory in a countable language
L. For an infinite cardinal &, let I+ (k) denote the number of
models of T of size k, up to an isomorphism.

» Note: 1 < I1 (k) <2 for all k.
» Morley's theorem: If I+ (k) = 1 for some uncountable , then

IT (k) =1 for all uncountable .

Morley's conjecture: /1 (k) is a non-decreasing function on
uncountable cardinals.

Shelah’s approach: isolate dividing lines, expressed as the
ability to encode certain families of graphs in a definable way,
such that one can prove existence of many models on the
non-structure side of a dividing line and develop some theory
on the structure side (forking, weight, prime models, etc). E.g.
stability or NIP.

Led to a proof of Morley's conjecture. By later work of [Hart,
Hrushovski, Laskowski] we know all possible values of /7 (k).
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NIP theories

» A formula ¢ (x,y) € L (where x, y are tuples of variables) is
NIP in a structure M if the family
Fo ={¢(x,a) N M : a € M} has finite VC-dimension.

» Note that this is a property of the theory of M, i.e. if N is
elementarily equivalent to M then ¢ (x,y) is NIP in N as well.

» T is NIP if it implies that every formula ¢ (x,y) € L is NIP.

» Fact [Shelah]. If T is not NIP, then it has 2 models for any
infinite cardinal &.

Fact
[Shelah] T is NIP iff every formula ¢ (x,y) with |x| =1 is NIP.

» Curious original proof: holds in some model of ZFC +
absoluteness; since then had been finitized using Ramsey
theorem.
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» Examples of NIP theories:

» stable theories (e.g. algebraically / separably / differentially
closed fields, free groups (Sela), planar graphs),

» o-minimal theories (e.g. real closed fields with exponentiation
and analytic functions restricted to [0, 1]),

» ordered abelian groups (Gurevich, Schmitt),

» algebraically closed valued fields, p-adics.

» Non-examples: the theory of the random graph, pseudo-finite
fields, ...
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» Given a formula ¢ (x,y) and a set of parameters A, a ¢-type
p (x) over A is a maximal consistent collection of formulas of
the form ¢ (x, a) or =¢ (x, a), for a € A.

> A type p(x) € S4 (A) is definable if there is some ) (y,z) € L
and b € APl such that for any a € A, ¢ (x,a) € p < 1 (a, b)
holds.

» We say that ¢-types are uniformly definable if ¢ (y, z) can be
chosen independently of A and p.

» Definability of types over arbitrary sets is a characteristic
property of stable theories, and usually fails in NIP (consider
(Q, <))

» Laskowski observed that uniform definability of types over
finite sets implies Warmuth conjecture (and is essentially a
model-theoretic version of it).
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Model-theoretic compression schemes

Theorem

[Ch., Simon] If T is NIP, then for any formula ¢ (x,y), ¢-types are
uniformly definable over finite sets. This implies that every
uniformly definable family of sets in an NIP structure admits a
compression scheme.

» Note that we require not only the family F itself to be of
bounded VC-dimension, but also certain families produced
from it in a definable way, and that the bound on the size of
the compression scheme is not constructive.

» Main ingredients of the proof:

» invariant types, indiscernible sequences, honest definitions in
NIP (all these tools are quite infinitary),

» careful use of logical compactness,

» The (p, g)-theorem.
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such that N {A e F"} £ 0.

Fact

Assume that p > q > d. Then there is an N = N (p, q) such that
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Definition

We say that F satisfies the (p, q)-property, where p > q, if for
every 7/ C F with |F'| > p there is some F” C F' with |F"| > ¢
such that N {A e F"} £ 0.

Fact

Assume that p > q > d. Then there is an N = N (p, q) such that
if Fis a finite family of subsets of X of finite VC-codimension d
and satisfies the (p, q)-property, then there are by, ..., by € X
such that for every A € F, b; € A for some i < N.

» Was proved for families of convex subsets of the Euclidian
space by Alon and Kleitman solving a long-standing open
problem

» Then for families of finite VC- dimension by Matousek
(combining e-nets with the existence of fractional Helly
numbers for VC-families)

» Closely connected to a finitary version of forking from model
theory.
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Set theory: counting cuts in linear orders

» There are some questions of descriptive set theory character
around VC-dimension and generalizations of PAC learning
(Pestov), but I'll concentrate on connections to cardinal
arithmetic.

» Let x be an infinite cardinal.

Definition
ded k = sup{|/|: I is a linear order with a dense subset of size < k}.

» In general the supremum need not be attained.
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Equivalent ways to compute ded k

The following cardinals are the same:
1. dedk,
2. sup{\: exists a linear order | of size < k with A Dedekind
cuts},
3. sup{A: exists a regular x and a linear order of size < k with A

cuts of cofinality i on both sides}
(by a theorem of Kramer, Shelah, Tent and Thomas),

4. sup{\: exists a regular  and a tree T of size < k with A
branches of length p}.



Some basic properties of ded x

» r < ded k < 2% for every infinite k
(for the first inequality, let © be minimal such that 2* > &,
and consider the tree 2<#)



Some basic properties of ded x

» r < ded k < 2% for every infinite k
(for the first inequality, let © be minimal such that 2* > &,
and consider the tree 2<#)

> ded No = 2N°
(as Q@ C R is dense)



Some basic properties of ded x

» r < ded k < 2% for every infinite k
(for the first inequality, let © be minimal such that 2* > &,
and consider the tree 2<#)

> ded No = 2N°
(as Q@ C R is dense)

» Assuming GCH, ded x = 2" for all .



Some basic properties of ded x

v

k < ded k < 2% for every infinite k

(for the first inequality, let © be minimal such that 2* > &,
and consider the tree 2<#)

ded NO = 2N°

(as Q@ C R is dense)

Assuming GCH, ded k = 2% for all k.

[Baumgartner] If 2% = k™" (i.e. the nth sucessor of k) for
some n € w, then ded kK = 2.

v

v

v



Some basic properties of ded x

v

k < ded k < 2% for every infinite k

(for the first inequality, let © be minimal such that 2* > &,
and consider the tree 2<#)

ded NO = 2N°

(as Q@ C R is dense)

Assuming GCH, ded k = 2% for all k.

[Baumgartner] If 2% = k™" (i.e. the nth sucessor of k) for
some n € w, then ded kK = 2.

v

v

v

v

So is ded k the same as 2" in general?



Some basic properties of ded x

v

k < ded k < 2% for every infinite k

(for the first inequality, let © be minimal such that 2* > &,
and consider the tree 2<#)

ded NO = 2N°

(as Q@ C R is dense)

Assuming GCH, ded k = 2% for all k.

[Baumgartner] If 2% = k™" (i.e. the nth sucessor of k) for
some n € w, then ded kK = 2.

v

v

v

» So is ded k the same as 2" in general?

Fact
[Mitchell] For any k with cf k > Ry it is consistent with ZFC that
ded k < 2%,
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Counting types

» Let T be an arbitrary complete first-order theory in a
countable language L.

» For a model M, St (M) denotes the space of types over M
(i.e. the space of ultrafilters on the boolean algebra of
definable subsets of M).

» We define fr (k) =sup{|St (M)| : M = T, |M| = k}.

Fact

[Keisler], [Shelah] For any countable T, fr is one of the following
functions: k, K + 2%, k™0, ded x, (ded /{)NO, 2% (and each of these
functions occurs for some T ).

» These functions are distinguished by combinatorial dividing
lines, resp. w-stability, superstability, stability, non-multi-order,
NIP.

» In fact, the last dichotomy is an “infinite Shelah-Sauer lemma”
(on finite values, number of brunches in a tree is polynomial)
= reduction to 1 variable.
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Further properties of ded

> So we have k < ded & < (ded k)™ < 2% and ded x = 2%
under GCH.
> [Keisler, 1976] Is it consistent that ded s < (ded x)°?

Theorem
[Ch., Kaplan, Shelah] It is consistent with ZFC that
ded i < (ded k)™ for some k.

» Our proof uses Easton forcing and elaborates on Mitchell's
argument. We show that e.g. consistently dedX,, = N, and
(ded R, )™ = Ry a1,

» Problem. Is it consistent that ded x < (ded k)™ < 2 at the
same time for some k7
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Bounding exponent in terms of ded k

» Recall that by Mitchell consistently ded k < 2. However:

Theorem
[Ch., Shelah] 2" < ded (ded (ded (ded x))) for all infinite k.

» The proof uses Shelah’'s PCF theory.

» Problem. What is the minimal number of iterations which
works for all models of ZFC (or for some classes of cardinals)?
At least 2, and 4 is enough.
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Tame topological dynamics

» Stable group theory: genericity, stabilizers, Hrushovski's
reconstruction of groups from generic data (e.g. various
generalizations of these are used in his results on approximate
subgroups).

» Groups definable in o-minimal structures: real Lie groups,
Pillay’'s conjecture, etc.

» Common generalization: study of NIP groups, leads to
considering questions of “definable” topological dynamics.

» Parallel program: actions of automorphism groups of
w-categorical theories (recent connections to stability by Ben
Yaacov, Tsankov, Ibarlucia) - some things are very similar, but
we concentrate on the definable case for now.



Definable actions

» Let M =T and G is an M-definable group (e.g. GL(n,R),
SL(n,R), SO (n,R) etc).



Definable actions

» Let M =T and G is an M-definable group (e.g. GL(n,R),
SL(n,R), SO (n,R) etc).

» G acts by homeomorphisms on S¢ (M), its space of types -
this is a universal flow with respect to “definable” actions, we
try to understand this system: minimal flows, generics,
measures, etc.



Definable actions

» Let M =T and G is an M-definable group (e.g. GL(n,R),
SL(n,R), SO (n,R) etc).

» G acts by homeomorphisms on S¢ (M), its space of types -
this is a universal flow with respect to “definable” actions, we
try to understand this system: minimal flows, generics,
measures, etc.

Definition
An action of a definable group G on a compact space X is called

definable if:

» G acts by homeomorphisms,



Definable actions

» Let M =T and G is an M-definable group (e.g. GL(n,R),
SL(n,R), SO (n,R) etc).

» G acts by homeomorphisms on S¢ (M), its space of types -
this is a universal flow with respect to “definable” actions, we
try to understand this system: minimal flows, generics,
measures, etc.

Definition
An action of a definable group G on a compact space X is called

definable if:
» G acts by homeomorphisms,

» for each x € X, the map £, : G — X taking x to gx is
definable (a function f from a definable set Y C M to X is
definable if for any closed disjoint C;, C; C X there is an
M-definable D C Y such that f~1(C;) € D and
DNf1(G)=10).
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Definably amenable groups

» Let Mg (M) denote the totally disconnected compact space of
probability measures on Sg (M) (we view it as a closed subset
of [0, 1]L(M) with the product topology, coincides with the
weak*-topology).

» Now (G, Sg (M)) is a universal ambit for the definable actions
of G, and G is definably (extremely) amenable iff every
definable action admits a G-invariant measure (a G-fixed
point).

» Equivalently, G is definably amenable if there is a global (left)
G-invariant finitely additive measure on the boolean algebra of
definable subsets of G (can be extended from clopens in
S (M) to Borel sets by regularity).
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Definably amenable groups

Example

The following groups are definably amenable:

>

Any definable group which is amenable as a discrete group
(e.g. solvable groups),

Any definably compact group in an o-minimal theory (e.g.
S0 (R) is definably amenable, despite Banach-Tarski).

Any stable group. In particular the free group F; is known by
the work of Sela to be stable as a pure group, and hence is
definably amenable.

Any pseudo-finite group.

If K is an algebraically closed valued field or a real closed field
and n > 1, then SL(n, K) is not definably amenable.
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Connected components

> In an algebraic group over ACF, one can consider a connected
component of 1 with repsect to the Zariski topology. In RCF,
consider infinitesimals.
Definition
Let A be a small subset of M (a monster model for T). We define:
» GS =N {H < G : His A-definable, of finite index}.
> Ggo =
N {H < G : H is type-definable over A, of bounded index}.

> In general depend on A and can get smaller as A grows.
Fact
Let T be NIP. Then for every small set A we have:
> [Baldwin-Saxl] GJ = G§,
» [Shelah] GQ())O = G,
» Both are normal Aut (M)-invariant subgroups of G of bounded
index.



The logic topology on G/G%

» Let m: G — G/G® be the quotient map.

» We endow G/G% with the logic topology: a set S C G/G®
is closed iff 771 (S) is type-definable over some (any) small
model M.



The logic topology on G/G%

» Let m: G — G/G® be the quotient map.

» We endow G/G% with the logic topology: a set S C G/G®
is closed iff 771 (S) is type-definable over some (any) small
model M.

» With this topology, G/G% is a compact topological group.



The logic topology on G/G%

» Let m: G — G/G® be the quotient map.

» We endow G/G% with the logic topology: a set S C G/G®
is closed iff 771 (S) is type-definable over some (any) small
model M.

» With this topology, G/G% is a compact topological group.

» If GO = G (e.g. G is a stable group), then G/G% is a
profinite group: it is the inverse image of the groups G/H,
where H ranges over all definable subgroups of finite index.
Eg If G=(Z,+), then G% = GO is the set of elements
divisible by all n. The quotient G/G® is isomorphic as a
topological group to Z = I'HZ/nZ.



The logic topology on G/G%

» Let m: G — G/G® be the quotient map.

» We endow G/G% with the logic topology: a set S C G/G®
is closed iff 771 (S) is type-definable over some (any) small
model M.

» With this topology, G/G% is a compact topological group.

» If GO = G (e.g. G is a stable group), then G/G% is a
profinite group: it is the inverse image of the groups G/H,
where H ranges over all definable subgroups of finite index.
Eg If G=(Z,+), then G% = GO is the set of elements
divisible by all n. The quotient G/G® is isomorphic as a
topological group to Z = I'HZ/nZ.

» If G =5S0(2,R) is the circle group defined in a real closed
field R, then G is the set of infinitesimal elements of G and

G/G% is canonically isomorphic to the standard circle group
SO (2,R). Note also that G° = G, so # G%.
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Some results for definably amenable NIP groups (joint work
with Pierre Simon)

» Ergodic measures are liftings of the Haar measure on G/G%
via certain invariant types.

» There is a coherent theory of genericity extending the stable
case.

» Proofs use VC theory along with forking calculus in NIP
theories.
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>

Let (G, X) be a dynamical system, and for g € G let

mg : X = X be the corresponding homeomorphism.

Let £ (X) be the closure of {7 (x) : g € G} in the compact
space XX.

Then (E (X), ), where - is composition, is a semigroup (called
the Ellis enveloping semigroup of (G, X)).

Note: E (X) is a compact Hausdorff topological space such
that - is continuous in the first coordinate, namely for each

b € E (X) the map taking x to x - b is continuous.

Also (G, E (X)) is a flow as well, G acts on E (X) by mg o f.
The minimal closed left ideals in (E (X), ) coincide with the
minimal subflows of (G, E (X)) (nonempty closed subset | of S
such that a-/ C [ for all a € E (X)).

For any closed left ideal /, there is an idempotent u € /.

If I is minimal and u € | idempotent, then u -/ is a group.



Ellis group

>

Let (G, X) be a dynamical system, and for g € G let

mg : X = X be the corresponding homeomorphism.

Let £ (X) be the closure of {7 (x) : g € G} in the compact
space XX.

Then (E (X), ), where - is composition, is a semigroup (called
the Ellis enveloping semigroup of (G, X)).

Note: E (X) is a compact Hausdorff topological space such
that - is continuous in the first coordinate, namely for each

b € E (X) the map taking x to x - b is continuous.

Also (G, E (X)) is a flow as well, G acts on E (X) by mg o f.

The minimal closed left ideals in (E (X), ) coincide with the
minimal subflows of (G, E (X)) (nonempty closed subset | of S
such that a-/ C [ for all a € E (X)).

For any closed left ideal /, there is an idempotent u € /.
If I is minimal and u € | idempotent, then u -/ is a group.
Moreover, as u, | vary, these groups are isomorphic.
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» Applying this construction to our definable group G acting on
the space of its types, (G, Sg (M)), we obtain some Ellis
group u - [.

» There is a natural surjective group homomorphism
m:u-l — G/G%. Newelski conjectured that in NIP, it is an
isomorphism. But SL(2,R) is a counterexample.

» Corrected Ellis group conjecture [Pillay]. Suppose G is a
definably amenable NIP group. Then the restriction of
7:Sg(Mo) — G/G® to u- 1 is an isomorphism, for some/any
minimal subflow / of Sg(Mp) and idempotent u € / (i.e. 7 is
injective).

» Some partial results (including the o-minimal case) in a joint
work [Ch., Pillay, Simon].

Theorem
[Ch., Simon] The Ellis group conjecture is true.

» We can recover G/G% abstractly from the action and the Ellis
group does not depend on the model of T.



Ellis group conjecture

» Main ingredients of the proof:

» fine analysis of Borel definability of invariant types in NIP
theories,

» generic compact domination for the Baire ideal (a more
general version of the unique ergodicity for tame minimal
systems of Glasner, in the definable category).



