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Hypergraphs and Zarankiewicz’s problem

◮ We fix r ∈ N≥2 and let H = (V1, . . . ,Vr ;E ) be an r -partite
and r -uniform hypergraph (or just r -hypergraph) with vertex
sets V1, . . . ,Vr with |Vi | = ni , (hyper-) edge set
E ⊆

!
i∈[r ] Vi , and n =

"r
i=1 ni is the total number of

vertices.
◮ When r = 2, we say “bipartite graph” instead of

“2-hypergraph”.
◮ For k ∈ N, let Kk,...,k denote the complete r -hypergraph with

each part of size k (i.e. Vi = [k] and E =
!

i∈[k] Vi ).
◮ H is Kk,...,k -free if it does note contain an isomorphic copy of

Kk,...,k .
◮ Zarankiewicz’s problem: for fixed r , k , what is the maximal

number of edges |E | in a Kk,...,k -free r -hypergraph H? (As a
functions of n1, . . . , nr .)



Number of edges in a Kk ,...,k-free hypergraph

◮ The following fact is due to [Kővári, Sós, Turán’54] for r = 2
and [Erdős’64] for general r .

Fact (The Basic Bound)
If H is a Kk,...,k -free r -hypergraph then |E | = Or ,k

#
nr−

1
kr−1

$
.

◮ So the exponent is slightly better than the maximal possible r
(we have nr edges in Kn,...,n). A probabilistic construction in
[Erdős’64] shows that this bound cannot be substantially
improved (but whether it is sharp up to a constant is widely
open).

◮ Restricting to hypergraphs that are defined “geometrically”,
one might expect stronger bounds on the exponent.



Semialgebraic hypergraphs
◮ A set X ⊆ Rd is semialgebraic if X is a finite union of sets of

the form
%
x̄ ∈ Rd : f1 (x̄) ≥ 0, . . . , fp (x̄) ≥ 0, fp+1 (x̄) > 0, . . . , fq (x̄) > 0

&
,

where p ≤ q ∈ N and each fi ∈ R[x̄ ] is a polynomial in d
variables.

◮ X has (description) complexity t if d ≤ t, it is a union of at
most t such sets, q ≤ t and deg(fi ) ≤ t for all i .

◮ A finite r -hypergraph H = (V1, . . . ,Vr ;E ) is semialgebraic, of
complexity t if Vi ⊆ Rdi for some di and E =

#!
i∈[r ] Vi

$
∩ X

for some semialgebraic set X ⊆ Rd1+...+dr of complexity t (up
to isomorphism).

◮ A lot of (hyper-)graphs arising in incidence combinatorics of
elementary geometric shapes are semialgebraic, of small
complexity.



Example: point-line incidences on the plane
◮ Let I ⊆ R2 × R2 be the incidence relation between points and

lines on the plane, i.e.

I (x1, x2; y1, y2) ⇐⇒ x2 = y1x1 + y2.

◮ Then I is semialgebraic (of complexity 2) and K2,2-free (for
any two points belong to at most one line, and vice versa).

◮ Let V1 be a set of n1 points and V2 a set of n2 lines on the
plane R2, and E := I ↾V1×V2 . Then the bipartite graph
(V1,V2;E ) satisfies the basic bound of Kővári, Sós, Turán:

|E | = O
#
n

3
2

$
.

◮ While this is optimal for general graphs, utilizing the geometry
of the reals:

Fact (Szémeredi-Trotter ’83)
In fact, |E | = O

#
n

4
3

$
.

◮ Note that 4
3 < 3

2 .



Zarankiewicz for semialgebraic (hyper-)graphs

◮ Szémeredi-Trotter theorem has numerous generalizations for
semialgebraic graphs, e.g. [Pach, Sharir’98], [Elekes,
Szabó’12], and more generally

Fact (Fox, Pach, Sheffer, Suk, Zahl’17)
If (V1,V2;E ), with Vi ⊆ Rdi , is a semialgebraic bipartite graph of
complexity t and Kk,k -free, then for any ε > 0,

|E | = Ot,d1,d2,k,ε

'
n

d2(d1−1)
d1d2−1 +ε

1 n
d1(d2−1)
d1d2−1

2 + n1 + n2

(
.

◮ Generalizations to semialgebraic hypergraphs [Do’18].
◮ Moral: for semialgebraic, the bound is of the form O(ne−ε),

where e is given by the basic bound for arbitrary graphs.



Connections to the “trichotomy principle” in model theory

◮ The trichotomy principle in model theory: in a sufficiently
tame context (including semialgebraic), every structure is
either “trivial”, or essentially a vector space, or interprets a
field (see below).

◮ In this talk: the exponents in Zarankiewicz bounds for
semialgebraic (hyper-)graphs appear to reflect the trichotomy
principle, and detect presence of algebraic structures (groups,
fields).

◮ Instances of this principle are also known in combinatorics —
extremal configuration for various counting problems tend to
come from algebraic structures.



Elekes-Szabó theorem, 1

◮ [Erdős, Szemerédi’83] There exists some c ∈ R>0 such that:
for every finite A ⊆ R,

max {|A+ A| , |A · A|} = Ω
#
|A|1+c

$
.

◮ [Solymosi], [Konyagin, Shkredov] Holds with 4
3 + ε for some

sufficiently small ε > 0. (Conjecturally: with 2 − ε for any ε).
◮ [Elekes, Rónyai’00] Let f ∈ R [x , y ] be a polynomial of degree

d , then for all A,B ⊆n R,

|f (A× B)| = Ωd

#
n

4
3

$
,

unless f is either of the form g(h(x) + i(y)) or g(h(x) · i(y))
for some univariate polynomials g , h, i .



Elekes-Szabó theorem, 2

◮ [Elekes-Szabó’12] provide a conceptual generalization: for any
algebraic surface Q(x1, x2, x3) ⊆ R3 so that the projection
onto any two coordinates is finite-to-one, exactly one of the
following holds:

1. there exists γ > 0 s.t. for any finite Ai ⊆n R we have

|Q ∩ (A1 × A2 × A3)| = O(n2−γ).

2. There exist open sets Ui ⊆ R and V ⊆ R containing 0, and
analytic bijections with analytic inverses πi : Ui → V such that

π1(x1) + π2(x2) + π3(x3) = 0 ⇔ Q(x1, x2, x3)

for all xi ∈ Ui .



Generalizations of the Elekes-Szabó theorem
Let Q ⊆ X1 × . . .× Xr be an algebraic surface with finite-to-one
projection onto any r − 1 coordinates and dim(Xi ) = k .

1. [Elekes, Szabó’12] r = 3, k arbitrary over C (only count on
grids in general position, correspondence with a complex
algebraic group of dimension k);

2. [Raz, Sharir, de Zeeuw’18] r = 4, k = 1 over C;

3. [Raz, Shem-Tov’18] k = 1, Q of the form f (x1, ..., xr−1) = xr
for any r over C.

4. [Bays, Breuillard’18] r and k arbitrary over C, recognized that
the arising groups are abelian (however no bounds on γ);

5. Related work: [Raz, Sharir, de Zeeuw’15], [Wang’15]; [Bukh,
Tsimmerman’ 12], [Tao’12]; [Hrushovski’13]; [Jing, Roy,
Tran’19].

6. [C., Peterzil, Starchenko] Any s and k , over R, C (and much
more) and explicit bounds on γ. A special case:



Theorem (C., Peterzil, Starchenko)
Assume r ≥ 3 and Q ⊆ Rr is semi-algebraic, of description
complexity D, such that the projection of Q to any r − 1
coordinates is finite-to-one. Then exactly one of the following
holds.

1. There exists a constant c , depending only on r and D, such
that: for any finite Ai ⊆n R, i ∈ [r ], we have

|Q ∩ (A1 × . . .× Ar )| = Or ,d

)
nr−1−γ

*
,

where γ = 1
3 if r ≥ 4, and γ = 1

6 if r = 3.
2. There exist open sets Ui ⊆ R, i ∈ [r ], an open set V ⊆ R

containing 0, and analytic bijections with analytic inverses
πi : Ui → V such that

π1(x1) + · · ·+ πr (xr ) = 0 ⇔ Q(x1, . . . , xr )

for all xi ∈ Ui , i ∈ [r ].



Remarks

1. In general, for semialgebraic Q ⊆ X1 × . . .× Xr with
dim(Xi ) = k , holds with V a neighborhood of 0 in an abelian
Lie group of dimension k .

2. In fact, our theorem is for Q definable in an arbitrary
o-minimal expansion of R — so Q can be defined not only
using polynomial (in-)equalities, but also using ex and
restricted analytic functions.

3. One ingredient — improved Zarankiewicz bounds also hold in
this context ([Basu, Raz], [C., Galvin, Starchenko]).

4. Another – a higher arity generalization of the Abelian Group
Configuration theorem of Zilber and Hrushovski on recognizing
groups from a “generic chunk”. We discuss a simple purely
combinatorial case:



Recognizing groups, 1

1. Assume that (G ,+, 0) is an abelian group, and consider the
r -ary relation Q ⊆

!
i∈[r ] G given by x1 + . . .+ xr = 0.

2. Then Q is easily seen to satisfy the following two properties,
for any permutation of the variables of Q:

∀x1, . . . , ∀xr−1∃!xrQ(x1, . . . , xr ), (P1)

∀x1, x2∀y3, . . . yr∀y ′3, . . . , y ′r
#
Q(x̄ , ȳ) ∧ Q(x̄ , ȳ ′) → (P2)

)
∀x ′1, x ′2Q(x̄ ′, ȳ) ↔ Q(x̄ ′, ȳ ′)

*$
.

We show a converse, assuming r ≥ 4:



Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)
Assume r ∈ N≥4, X1, . . . ,Xr and Q ⊆

!
i∈[r ] Xi are sets, so that Q

satisfies (P1) and (P2) for any permutation of the variables. Then
there exists an abelian group (G ,+, 0G ) and bijections πi : Xi → G
such that for every (a1, . . . , ar ) ∈

!
i∈[r ] Xi we have

Q(a1, . . . , ar ) ⇐⇒ π1(a1) + . . .+ πr (ar ) = 0G .

◮ If X1 = . . . = Xr , property (P1) is equivalent to saying that
the relation Q is an (r − 1)-dimensional permutation on the
set X1, or a Latin (r − 1)-hypercube, as studied by Linial and
Luria. Thus the condition (P2) characterizes, for r ≥ 3, those
Latin r -hypercubes that are given by the relation
“x1 + . . .+ xr−1 = xr ” in an abelian group.



Recognizing fields

◮ For the semialgebraic K2,2-free point-line incidence relation
Q = {(x1, x2; y1, y2) ∈ R4 : x2 = y1x1 + y2} ⊆ R2 × R2 we
have the (optimal) lower bound |Q ∩ (V1 × V2)| = Ω(n

4
3 ).

◮ To define it we use both addition and multiplication, i.e. the
field structure.

◮ This is not a coincidence — any non-trivial lower bound on the
Zarankiewicz’s exponent of Q allows to recover a field from it:

Theorem (Basit, C., Starchenko, Tao, Tran)
Assume that Q ⊆ Rd =

!
i∈[r ]Rdi for some r , di ∈ N is

semialgebraic and Kk,...,k -free, but |Q ∩
!

i∈[r ] Vi | ∕= O(nr−1). Then
a real closed field is definable in the first-order structure (R, <,Q).



Ingredients

◮ An almost optimal Zarankiewicz bound for semilinear
hypergraphs.

◮ The trichotomy theorem for o-minimal structures from model
theory [Peterzil, Starchenko].



Semilinear relations of bounded complexity

◮ A set X ⊆ Rd is semilinear, of complexity t, if X is a union of
at most t sets of the form
%
x̄ ∈ Rd : f1 (x̄) ≤ 0, . . . , fp (x̄) ≤ 0, fp+1 (x̄) < 0, . . . , fq (x̄) < 0

&
,

where p ≤ q ≤ t ∈ N and each fi : Rd → R is a linear function

f (x1, . . . , xd) = λ1x1 + . . .+ λdxd + a

for some λi , a ∈ R.



Zarankiewicz bound for relations of bounded box complexity

Theorem (BCSTT)
For any integers r ≥ 2, s ≥ 0, k ≥ 2 there are α = α(r , s, k) ∈ R
and β = β(r , s) ∈ N such that: for any finite Kk,...,k -free semilinear
r -hypergraph H = (V1, . . . ,Vr ;E ) with E ⊆

!
i∈[r ] Vi of

complexity ≤ s we have

|E | ≤ αnr−1 (log n)β .

Moreover, we can take β(r , s) := s(2r−1 − 1).

◮ In particular, |E | = Or ,s,k,ε(n
r−1+ε) for any ε > 0.



An application to incidences with polytopes
◮ Applying with r = 2 we get the following:

Corollary (BCSTT)
For every s, k ∈ N there exists some α = α(s, k) ∈ R satisfying the
following.
Let d ∈ N and H1, . . . ,Hq ⊆ Rd be finitely many (closed or open)
half-spaces in Rd . Let F be the (infinite) family of all polytopes in
Rd cut out by arbitrary translates of H1, . . . ,Hq.
For any set V1 of n1 points in Rd and any set V2 of n2 polytopes in
F , if the incidence graph on V1 × V2 is Kk,k -free, then it contains
at most αn (log n)q incidences.

◮ In particular (a similar result was obtained independently by
[Tomon, Zakharov]):

Corollary (BCSTT)
For any set V1 of n1 points and any set V2 of n2 (solid) boxes with
axis parallel sides in Rd , if the incidence graph on V1 × V2 is
Kk,k -free, then it contains at most Od ,k

)
n(log n)2d

*
incidences.



Dyadic rectangles and a lower bound

◮ Is the logarithmic factor necessary?
◮ We focus on the simplest case of incidences with rectangles

with axis-parallel sides in R2. The previous corollary gives the
bound Od ,k

)
n(log n)4

*
.

◮ A box is dyadic if it is the direct products of intervals of the
form [s2t , (s + 1)2t) for some integers s, t.

◮ Using a different argument, restricting to dyadic boxes we get
a stronger upper bound O

#
n log n1
log log n1

$
, and give a construction

showing a matching lower bound (up to a constant).

Problem
What is the optimal bound on the power of log n? In particular,
does it have to grow with the dimension d?



Geometric weakly locally modular theories
◮ In our bounds, we can get rid of the logarithmic factor entirely

restricting to the family of all finite r -hypergraphs induced by
a given Kk,...,k -free relation (as opposed to all Kk,...,k -free
r -hypergraphs induced by a given relation).

◮ A first-order structure is geometric if the algebraic closure
operator satisfies the Exchange Principle and the quantifier ∃∞
is eliminated.

◮ Hence, in a model of a geometric theory, acl defines a
well-behaved notion of independence |⌣ (equivalently, a
matroid).

◮ A geometric structure is (weakly) locally modular if for any
small subsets A,B there exists some small subset C |⌣∅ AB
such that A |⌣acl(AC)∩acl(BC)

B .

◮ Moral: the algebraic closure operator behaves like the linear
span in a vector space, as opposed to the algebraic closure in
an algebraically closed field.



Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko’98)
Let M be an o-minimal saturated structure. TFAE:
◮ M is not locally modular;
◮ there exists a real closed field definable in M.

◮ [Marker, Peterzil, Pillay’92] Let X ⊆ Rn be a semialgebraic
but not semilinear set. Then · ↾[0,1]2 is definable in
(R, <,+,X ). In particular, it is not locally modular.

◮ Combining all of this, we get the result.



Thank you!

◮ Model-theoretic Elekes-Szabó for stable and o-minimal
hypergraphs, Artem Chernikov, Ya’acov Peterzil, Sergei
Starchenko (arXiv:2104.02235)

◮ Zarankiewicz’s problem for semilinear hypergraphs, Artem
Chernikov, Abdul Basit, Sergei Starchenko, Terence Tao and
Chieu-Minh Tran (arXiv:2009.02922)


