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Setting

>

T is a complete first-order theory in a language L, countable
for simplicity.

M = T — a monster model, x (M)-saturated for some
sufficiently large strong limit cardinal x (M).

G — a definable group (over () for simplicity).

As usual, for any set A we denote by Sy (A) the (compact,
Hausdorff) space of types (in the variable x) over A and by

5S¢ (A) C S, (A) the space of types in G.

Def, (A) denotes the boolean algebra of A-definable subsets of
M.

G acts naturally on Sg (M) by homeomorphisms:

for a = p(x )ESG( )andgEG(M),
g-p=tp(g-a)={o(x) e L(M):¢ (g x)€p}.
From now on T will be NIP.



Model-theoretic connected components

Let A be a small subset of M. We define:

» GS = {H < G : His A-definable, of finite index}.

> Ggo =
N {H < G : H is type-definable over A, of bounded index}.

| 2 GXO =
N {H < G : His Aut (M /A)-invariant, of bounded index}.

» Of course G O G3° O G2°, and in general all these subgroups
get smaller as A grows.



Connected components in NIP

Fact
Let T be NIP. Then for every small set A we have:

» [Baldwin-Saxl] G9 = G§,
> [Shelah] GI° = G,
> [Shelah for abelian groups, Gismatullin in general] Gg° = GZ°.

» All these are normal Aut (M)-invariant subgroups of G of
bounded index. We will be omitting () in the subscript.

Example

[Conversano, Pillay] There are NIP groups in which G # G (G
is a saturated elementary extension of SL(2,R), the universal cover
of SL(2,R), in the language of groups. G is not actually denable in
an o-minimal structure, but one can give another closely related
example which is).



The logic topology on G/G%

» Let 7: G — G/G be the quotient map.

» We endow G/G% with the logic topology: a set S C G/G®
is closed iff 771 (S) is type-definable over some (any) small
model M.

» With this topology, G/G% is a compact topological group.

» In particular, there is a normalized left-invariant Haar
probability measure hg on it.



Examples

1. If G°= G (e.g. G is a stable group), then G/G% is a
profinite group: it is the inverse image of the groups G/H,
where H ranges over all definable subgroups of finite index.

2. If G =S0(2,R) is the circle group defined in a real closed
field R, then G% is the set of infinitesimal elements of G and
G/G% is canonically isomorphic to the standard circle group
SO (2,R).

3. More generally, if G is any definably compact group defined in
an o-minimal expansion of a field, then G/G% is a compact
Lie group. This is part of the content of Pillay's conjecture
(now a theorem).



Measures

v

A Keisler measure 11 over a set of parameters AC M is a
finitely additive probability measure on the boolean algebra
Def, (A).

S (1) denotes the support of i, i.e. the closed subset of S, (A)
such that if p € S(u), then (¢ (x)) > 0 for all ¢ (x) € p.

Let M, (A) be the space of Keisler measures over A. It can be
naturally viewed as a closed subset of [0, l]L(A) with the
product topology, so M, (A) is compact. Every type can be
associated with a Dirac measure concentrated on it, thus

Sx (A) is a closed subset of M, (A).

There is a canonical bijection {Keisler measures over A}
{Regular Borel probability measures on S, (A)}.



The weak law of large numbers

» Let (X, pu) be a probability space.

» Given aset S C X and xq,...,x, € X, we define
AV (xi,. . X S) =150 {x, ... xa ).

» For n € w, let 1" be the product measure on X".

Fact
(Weak law of large numbers) Let S C X be measurable and fix

€ > 0. Then for any n € w we have:

n (o n . . 1
P (xe X" |Av (x1, .. X0 S) — p(S)] > e) < a2




A uniform version for families of finite VC dimension

Fact

[VC theorem] Let (X, 1) be a probability space, and let F be a
family of measurable subsets of X of finite VC-dimension d such
that:

1. for each n, the function
fo(x1,...,%n) =supscr |AV (x1,...,xn; S) — 1 (S)| is a
measurable function from X" to R;

2. for each n, the function g, (xi, .. x,,,xl, o Xxh) =

supscr |Av (X1, ..., Xn S) — Av (xl, oo, Xb:S)| from X2" to R
is measurable.

Then for every ¢ > 0 and n € w we have:

2

" (sup |AV (X1, ..., xm S) — 1 (S)] > €> <80 (nd) exp (_ng) ]
SeF 32



Approximating measures by types

» In particular this implies that in NIP measures can be
approximated by the averages of types:

Corollary
(*) [Hrushovski, Pillay] Let T be NIP, pn € M, (A), ¢ (x,y) € L
and € > 0 arbitrary. Then there are some py,...,pn—1 € S (1) such

that p (¢ (x,a)) =~ Av(po,...,Pn—1; ¢ (x,a)) for all a € M.



Definably amenable groups

Definition
A definable group G is definably amenable if there is a global (left)
G-invariant measure on G.

>

If for some model M there is a left-invariant Keisler measure
o on M-definable sets (e.g. G (M) is amenable as a discrete
group), then G is definably amenable.

Any stable groups is definably amenable. In particular the free
group F, is known by the work of Sela to be stable as a pure
group, and hence is definably amenable.

Definably compact groups in o-minimal structures are
definably amenable.

If K is an algebraically closed valued field or a real closed field
and n > 1, then SL(n, K) is not definably amenable.

Any pseudo-finite group is definably amenable.



Problem

» Problem. Classify all G-invariant measures in a definably
amenable group (to some extent)?

» The set of measures on S (M) can be naturally viewed as a
subset of C* (S (M)), the dual space of the topological vector
space of continuous functions on S (M), with the weak*
topology of pointwise convergence (i.e. u; — p if
[ fdp; — [fdp for all f € C(S(M))). One can check that
this topology coincides with the logic topology on the space of
2 (M) that we had introduced before.

» The set of G-invariant measures is a compact convex subset,
and extreme points of this set are called ergodic measures.

» Using Choquet theory, one can represent arbitrary measures as
integral averages over extreme points.

» We will characterize ergodic measures on G as liftings of the
Haar measure on G/G% w.r.t. certain “generic” types.



Invariant and strongly f-generic types
Fact

1. [Hrushovski, Pillay] If T is NIP and p € S, (M) is invariant
over M, then it is Borel-definable over M: for every
¢ (x,y) € L the set {a € M : ¢(x,a) € p} is defined by a
finite boolean combination of type-definable sets over M.

2. [Shelah] If T is NIP and M is a small model, then there are at
most 2IM| global M-invariant types.

Definition
A global type p € S¢ (M) is strongly f-generic if there is a small
model M such that g - p is invariant over M for all g € G (M).

Fact
1. An NIP group is definably amenable iff there is a strongly
f-generic type.

2. If p € Sg (M) is strongly f-generic then
Stab (p) = G = G*.



f-generic types
Definition
A global type p € Sx (M) is f-generic if for every ¢ (x) € p and
some/any small model M such that ¢ (x) € L(M) and any
g € G(M), g+ ¢(x) contains a global M-invariant type.

Theorem
Let G be an NIP group, and p € S (M).
1. G is definably amenable iff it has a bounded orbit (i.e. exists
p € Sg (M) s.t. |Gp| < k(M)).
2. If G is definably amenable, then p is f-generic iff it is
G%-invariant iff Stab (p) has bounded index in G iff the orbit
of p is bounded.

» (1) confirms a conjecture of Petrykowski in the case of NIP
theories (it was previously known in the o-minimal case
[Conversano-Pillay]).

» Our proof uses the theory of forking over models in NIP from
[Ch., Kaplan] (more later in the talk).



f-generic vs strongly f-generic

» Are the notions of f-generic and strongly f-generic different?

» Remark. p € S(M) is strongly f-generic iff it is f-generic and
invariant over some small model M.

» There are f-generic types which are not strongly f-generic
(already in RCF).



Getting a (strongly) f-generic type from a measure

Proposition. Let y be G-invariant, and assume that p € S ().
Then p is f-generic.

Proof.

Fix ¢ (x) € p, let M be some small model such that ¢ is defined
over M. By [Ch., Pillay, Simon], every G(M)-invariant measure p
on S(M) extends to a global G-invariant, M-invariant measure p’
(one can take an “invariant heir” of p). As plpm (¢ (x)) >0, it
follows that ¢ (x) € g for some g € S (1'). But every type in the
support of an M-invariant measure is M-invariant.



Getting a measure from an f-generic type

» We explain the connection between G-invariant measures and
f-generic types.

» Let p € Sg (M) be f-generic (so in particular gp is
G%-invariant for all g € G).

> Let Ay, ={8 € G/G?:¢(x) €g-p}. Itisameasurable
subset of G/G% (using Borel-definability of invariant types in
NIP).
Definition
For ¢ (x) € L(M), we define 11, (¢ (x)) = ho (A p).

» The measure j1, is G-invariant and pig., = pp for any g € G.



Properties of pp's

» Lemma. For a fixed formula ¢ (x, y), the family of all
Ag(x,b),p Where b varies over Ml and p varies over all f-generic
types. Then A, has finite VC-dimension.

» Corollary. For fixed ¢ (x) € L(M) and an f-generic
p € S (M), the family 7 = {g - Apx)p: 8 € G/G%} has
finite VC-dimension (as changing the formula we can assume
that every translate of ¢ is an instance of ¢).

Lemma (**). For any ¢ (x) € L, € > 0 and a finite collection of
f-generic types (p;);.,, there are some go,...,gm—1 € G such that
for any g € G and i < n we have

1 (& ¢ (x)) = Av(gj - & - ¢ (x) € pi).



Proof.
Enough to be able to apply the VC-theorem to the family F.

» It has finite VC-dimension by the previous corollary

» We have to check that f,, g, are measurable for all n € w.
Using invariance of hg this can be reduced to checking that
certain analytic sets are measurable.

» As L is countable, G/G% is a Polish space (the logic topology
can be computed over a fixed countable model). Analytic sets
in Polish spaces are universally measurable.

0J

» Remark. In fact the proof shows that one can replace finite by
countable.



Properties of pp's

Proposition. Let p be an f-generic type, and assume that g € Gp.
Then q is f-generic and 1p = fiq.

Proof.

» q is f-generic as the space of f-generic types is closed.

» Fix some ¢ (x). It follows from Lemma (**) that the measure
ip (¢ (x)) is determined up to ¢ by knowing which cosets of
¢ (x) belong to p. These cosets are the same for both types p
and g by topological considerations on S, (M).

0J

» It follows that for a given G-invariant measure p, the set of
f-generic types p for which p, = p is closed.



Properties of pp's

Proposition. Let p be f-generic. Then for any definable set ¢ (x),
if 115 (¢ (x)) > 0, then there is a finite union of translates of ¢ (x)
which has p,-measure 1.

Proof.
Can cover the support S (11p) by finitely many translates using the
previous lemma and compactness. Ol



Properties of pp's

Lemma (***). Let u be G-invariant. Then for any € > 0 and
¢ (x,y), there are some f-generic po, ..., ps—1 such that

(6 (%, B)) ~ AV (1, (6 (x, b)) for any b & M.
Proof.

>

>

WLOG every translate of an instance of ¢ is an instance of ¢.

On the one hand, by Lemma (*) and G-invariance of x there
are types po, ..., Ppn_1 from the support of y such that

(¢ (x, b)) =* Av (g¢ (x, b) € p;) for any g € G and b € M.
We know that p;'s are f-generic.

Then, by Lemma (**) for every b € M there are some
g0,---,8m—1 € G such that for any i < n,

pp; (¢ (x, b)) == Av (gj - & (x, b) € pi).

Combining and re-enumerating we get that

1 (¢ (x, b)) % Av (pp; (¢ (x, b))).

O



Ergodic measures

Theorem
Global ergodic measures are exactly the measures of the form (i,
for p varying over f-generic types.



Proof: p,'s are ergodic.

» We had defined ergodic measures as extreme points of the
convex set of G-invariant measures.

» Equivalently, a G-invariant measure p € 9, (M) is ergodic if
w1 (Y) is either 0 or 1 for every Borel set Y C S, (M) such that
uw(YAgY)=0forall g eG.

» Fix a global f-generic type p, and for any Borel set X C S (M)
let £, (X) = {g € G/G™ : gp € X}. Note that £, (X) is
Borel The measure /i, defined earlier extends naturally to all
Borel sets by taking 1, (X) = ho (f, (X)), defined this way it
coincides with the usual extension of a finitely additive Keisler
measure /i, to a regular Borel measure.

» As hg is ergodic on G/G% and f, (XAgX) = £, (X) Agfy (X),
it follows that y, is ergodic.



Proof: p ergodic = p = p, for some f-generic p

> Let i be an ergodic measure.

» By Lemma (**) , as L is countable, x can be written as a limit
of a sequence of averages of measures of the form .

» Let S be the set of all p,'s ocurring in this sequence, S is
countable.

» It follows that 1 € ConvS, and it is still an extreme point of
ConvS.

» Fact [e.g. Bourbaki]. Let E be a real, locally convex, linear
Hausdorff space, and C a compact convex subset of E, S C C.
Then C = ConvS iff S includes all extreme points of C.

» Then actually € S.

» It remains to check that if p is the limit of a countable set of
pi's along some ultrafilter U, then also the y,'s converge to
pp along U. By the countable version of Lemma (*), given
e >0 and ¢ (x), we can find go,...,gm-1 € G such that
Lp; (@ (x)) =° Av(gjo (x) € p;) for all i € w. But then
{icw:pp (¢(x)) =° up(¢(x))} € U, so we can conclude.




Several notions of genericity

» Stable setting: a formula ¢ (x) is generic if there are finitely

many elements go,...,gn—1 € G such that
G =Uicn8i -0 (x)

> A global type p € S, (M) is generic if every formula in it is
generic.

» Problem: generic types need not exist in unstable groups.

» Several weakenings coming from different contexts were
introduced by different people (in the definably amenable
setting, and more generally).



Several notions of genericity

Theorem
Let G be definably amenable, NIP. Then the following are
equivalent:

1.
2.

4.
5.

¢ (x) is f-generic (i.e. belongs to an f-generic type),

¢ (x) is weakly generic (i.e. exists a non-generic 1 (x) such
that ¢ (x) U (x) is generic),

¢ (x) does not G-divide (i.e. there is no sequence (gi)c,, in G
and k € w such that {gi¢ (x)},.., is k-inconsistent),

(¢ (x)) > 0 for some G-invariant measure i,

iCw

tp (¢ (x)) > 0 for some ergodic measure fip.

If there is a generic type, then all these notions are equivalent to
“¢ (x) is generic”. G admits a generic type iff it is uniquely ergodic.



Some comments on the proof

The hardest step is to show that if ¢ (x) is f-generic, then it has
positive measure.

» Key proposition. Let ¢ (x) be f-generic. Then there are
some global f-generic types po, ..., pn—1 € Sg (M) such that
for every g € G (M) we have g¢ (x) € p; for some i < n.

> (as then yup, (¢ (x)) > L for some i < n).
» |dea of the proof:



Dividing and forking

Fact
Let T be NIP, M a small model and ¢ (x, a) is a formula. Then the

following are equivalent:
1. There is a global M-invariant type p (x) such that ¢ (x, a) € p.
2. ¢(x,a) does not divide over M.

» This is a combination of non-forking=invariance for global
types and a theorem of [Ch.,Kaplan] on forking=dividing for
formulas in NIP.

» With this fact, a formula ¢ (x) is f-generic iff for every M over
which it is defined, and for every g € G (M), g¢ (x) does not
divide over M.



Adding G to the picture

Theorem
Let G be definably amenable, NIP.

1. Non-f-generic formulas form an ideal (in particular every
f-generic formula extends to a global f-generic type by Zorn's
lemma).

2. Moreover, this ideal is S1 in the terminology of Hrushovski:
assume that ¢ (x) is f-generic and definable over M. Let
(8i)jc,, be an M-indiscernible sequence, then go¢ (x) A g1 (x)
is f-generic.

3. There is a form of lowness for f-genericity, i.e. for any formula
¢ (x,y) € L(M), the set
By = {be M: ¢(x,b) is not f-generic} is type-definable over
M.



(p, g)-theorem

Definition

We say that F = {X, : a € A} satisfies the (p, q)-property if for
every A C A with |A’| > p there is some A” C A" with |A”| > ¢
such that (,c 4 Xa # 0.

Fact

[Alon, Kleitman]+[Matousek] Let F be a finite family of subsets of
S of finite VC-dimension d. Assume that p > q > d. Then there
isan N = N (p, q) such that if F satisfies the (p, q)-property, then
there are by, ..., by € S such that for every a € A, b; € X, for
some i < N.

» The point is that if ¢ (x) is f-generic, then the family
F={go(x)NY :gec G} with Y the set of global f-generic
types, satisfies the (p, g)-property for some p and gq.



Problem

» We return to the topological dynamics point of view (which
was the original motivation of Newelski).

» The set of weakly generic types is the closure of the set of
almost periodic types in (G, Sg (M)).

» By the theorem, a type is weakly generic iff it is f-generic.

» Minimal flows are exactly of the form S () with p varying
over f-generic types.

» We still don't know however if weakly generic types are almost
periodic, equivalently if p € S (up) for an f-generic type p.



Ellis group conjecture

>

v

Let T be NIP, M a small model, and let S s (M) be the
space of types in Sg (M) finitely satisfiably in M.

We consider the dynamical system (G, Sg p (M)), then its
enveloping Ellis semigroup is E (M) = (S¢.m (M), -) where
p-q=tp(a-b/M) for some/any b = q, a = p|lmp. This
operation is left-continuous

Let M be a minimal ideal in E (M), and let u € M be an
idempotent. Then u- M is a group, and it doesn't depend on
the choice of M and u. We call it the Ellis group (attached to
the data).

There is a natural surjective group homomorphism
Tiu-M— G/G%,

Conjecture [Newelski]: G/G% is isomorphic to the Ellis
group when G is NIP.

[Gismatullin, Penazzi, Pillay] SL; (R) is a counter-example.



Ellis group conjecture

» Corrected conjecture [Pillay]: Let G be definably amenable,
NIP. Then 7 is an isomorphism of G/G% and the Ellis group.

» Partial results:

» NIP with fsg [Pillay]
» groups definable in o-minimal theories [Ch., Pillay, Simon]

Theorem
The Ellis group conjecture holds.



	Setting and preliminaries
	Connected components in NIP
	Measures in NIP
	Definably amenable groups
	Notions of genericity in definably amenable NIP groups

