Convolution semigroup on Keisler measures

Artem Chernikov (joint with Kyle Gannon and Krzysztof Krupiński)

University of Maryland, College Park

Logic Seminar University of Leeds, UK

Sep 25, 2024

Classical (locally-)compact case

- ► Let *G* be a locally compact topological group.
- \triangleright Then the space $\mathcal{M}(G)$ of regular Borel probability measures on *G* is equipped with the *convolution product*:

$$
\mu * \nu(A) = \int_{y \in G} \int_{x \in G} \chi_A(x \cdot y) d\mu(x) d\nu(y)
$$

for a Borel set $A \subseteq G$.

- \blacktriangleright A measure μ is *idempotent* if $\mu * \mu = \mu$.
- \triangleright A classical line of work in progressively broader contexts [Kawada,Itô'40], [Wendel'54], [Rudin'59], [Glicksberg'59], [Cohen'60] culminates in:

Fact (Pym'62)

Let G be a locally compact group and $\mu \in \mathcal{M}(G)$ *. Then the following are equivalent:*

- 1. *µ is idempotent;*
- 2. *the support* supp(μ) *of* μ *is a compact subgroup of G and* $\mu|_{\text{supp}(\mu)}$ *is the normalized Haar measure on* supp (μ) *.*

Idempotent types in stable groups

▶ Generalizing a classical fact about idempotent types in stable groups [Newelski]:

Fact (C., Gannon)

Let G be a (*type-*)definable *group* in a stable *structure M*, $U \succ M$ *a saturated elementary extension, and* $\mu \in \mathfrak{M}_{G,M}(\mathcal{U})$ *a global Keisler measure. Then µ is idempotent if and only if µ is the unique left-invariant (and the unique right-invariant) measure on a type-definable subgroup of G*(*U*) *(namely, the left-/right-stabilizer of* μ).

- \blacktriangleright The following groups are stable: abelian, free, algebraic over $\mathbb C$ (e.g. $GL_n(\mathbb{C}), SL_n(\mathbb{C})$, abelian varieties), etc.
- ▶ This suggests a remarkable analogy between the topological and definable settings, even though they are proved using rather different methods.
- \triangleright We are interested in extending this beyond stable structures, especially to generically stable measures in NIP groups non-trivial already for types instead of general measures.

Invariant types and Morley sequences

Given a global type $p \in S_{\rm x}(\mathcal{U})$ (automorphism-)invariant over a small set $A \subseteq U$ and $U' \succ U$ a bigger monster model with respect to \mathcal{U} , we let $p|_{\mathcal{U}'}$ be the unique extension of p to a type in $\mathcal{S}_\mathsf{x}(\mathcal{U}')$ which is invariant over *A*. Given another *A*-invariant type *q* ∈ *S*^{*y*} (*U*), we define the *A*-invariant type *p* ⊗ *q* ∈ *S*_{*x*}^{*(U*)} via $p \otimes q := tp(ab/U)$ for some/any *a*, *b* in U' such that $b \models q$ and $a \models p|_{Ub}$. Given an arbitrary linear order $(I, <)$, a sequence $\bar{a} = (a_i : i \in I)$ in *U* is a *Morley sequence* in *p* over *A* if $a_i \models p|_{Aa}$ for all $i \in I$. Then the sequence \overline{a} is indiscernible over A, and for any other Morley sequence $\vec{a}' = (a'_i : i \in I)$ in p over A we have tp(*a*¯*/A*) = tp(*a*¯′ */A*). We can then define a global *A*-invariant type $p^{(I)}((x_i : i \in I)) \in S_{\bar{x}}(\mathcal{U})$ as $\bigcup \{\mathrm{tp}(\bar{a}/B) : A \subseteq B \subseteq \mathcal{U} \text{ small}, \bar{a} = \bar{a}\}$ $(a_i : i \in I)$ a Morley sequence in p over B .

Generically stable types, 1

- ▶ *Stable structures* are viewed as a model theoretic paradise, and many tools for analyzing types and models are available.
- ▶ When considering larger classes of structures, for example NIP, *generically stable types*, when available, play an important role both in their model theoretic analysis and applications (elimination of imaginaries in ACVF; model theoretic counterpart of Berkovich spaces; etc.)
- ▶ Many equivalent characterizations under NIP, working in an arbitrary theory use the strongest one [Pillay, Tanovic]:

Definition

A global type $p \in S_\chi(\mathcal{U})$ is *generically stable* if it is *A*-invariant for some small $A \subset U$, and for any ordinal α (or just for $\alpha = \omega + \omega$), $(a_i : i \in \alpha)$ a Morley sequence in p over A and formula $\varphi(x) \in \mathcal{L}(\mathcal{U})$, the set $\{i \in \alpha : \models \varphi(a_i)\}$ is either finite or co-finite.

Generically stable types, 2

Fact

Let $p \in S_{\mathsf{x}}(\mathcal{U})$ *be generically stable, invariant over* $A \subseteq \mathcal{U}$ *. Then:*

- 1. *Every realization of* $p^{(\omega)}|_A$ *is a totally indiscernible sequence over A.*
- 2. *The type p is the unique global non-forking extension of* $p|_A$ *.*
- 3. For any $a \models p|_A$ and b *in* U such that tp(b/A) does not fork *over A,* we have $a \nightharpoonup_{A} b \iff b \nightharpoonup_{A} a$ (this holds for any *b when A is* an extension base, e.g. when $A \prec U$.

4. In particular, if
$$
a, b \models p|_A
$$
, then
\n $a \bigcup_A b \iff (a, b) \models p^{(2)}|_A \iff (b, a) \models p^{(2)}|_A$.

- 5. If A is an extension base, $(a_i)_{i<\omega} \models p^{(\omega)}|_A$ and $\varphi(x, a_0)$ $(where $ϕ(x, y) ∈ L(A)$) for *k* and *k* and *k* are *k* and *k* and *k* are *k*.$ $\{\varphi(x, a_i) : i < \omega\}$ *is inconsistent.*
- 6. Let $a \models p|_A$ and let b, c be arbitrary small tuples in U. If $a \nightharpoonup_{A} b$ and $a \nightharpoonup_{A} b$ *c*, then $a \nightharpoonup_{A} bc$;
- 7. *p is definable over A.*

Generically stable groups

► Let $G = G(x)$ be an \emptyset -type-definable group. For $A \subseteq \mathcal{U}$, *S*_{*G*}(*A*) denotes the set of types $p \in S(A)$ *concentrated on G*, i.e. such that $p(x) \vdash G(x)$

Definition (Pillay, Tanovic)

A type-definable group *G*(*x*) is *generically stable* if there is a generically stable $p \in S_G(\mathcal{U})$ which is left $G(\mathcal{U})$ -invariant (we might use "*G*(*U*)-invariant" and "*G*-invariant" interchangeably when talking about global types).

Fact

Suppose that G is a generically stable type-definable group in an arbitrary theory, witnessed by a generically stable <i>type $p \in S_G(\mathcal{U})$ *. Then we have:*

- 1. *p is the unique left G*(*U*)*-invariant and also the unique right G*(*U*)*-invariant type;*
- 2. $p = p^{-1}$ *(where* $p^{-1} := tp(g^{-1}/U)$ *for some/any* $g \models p$ *in a bigger monster model* $U' > U$ *).*

Idempotent generically stable types

- Exercise Let $p \in S_G(\mathcal{U})$ be a generically stable type over M.
- \blacktriangleright The left stabilizer Stab(p) of p is an intersection of relatively *M*-definable subgroups of *G*; in particular, it is *M*-type-definable.
- ► Given $p, q \in S_G(\mathcal{U})$ global *M*-invariant types, we define $p * q \in S_G(\mathcal{U})$ via $p * q(\varphi(x)) := p_x \otimes q_y(\varphi(x \cdot y))$ for all $\varphi(x) \in \mathcal{L}(U)$. Together with this operation, the set of all global *M*-invariant types in $S_G(\mathcal{U})$ forms a left-continuous semigroup.
- ▶ We say that an invariant type $p \in S_G(\mathcal{U})$ is *idempotent* if $p * p = p$.

Example

Let *G*′ be an arbitrary type-definable subgroup of *G* which is generically stable, witnessed by a generically stable left or right *G*'-invariant type $p \in S_{G'}(\mathcal{U})$. Then p is obviously idempotent.

 \triangleright Our central question in the case of types is whether this is the only source of generically stable idempotent types.

Stabilizers

▶ We let $H_{\ell} := \text{Stab}_{\ell}(p)$ and $H_r := \text{Stab}_r(p)$ be the left and the right stabilizer of *p*, respectively. Write *H* for either *H*^ℓ or *H*r.

Proposition

Assume p is generically stable and $p \in S_H(\mathcal{U})$ *. Then:*

- 1. *H is a generically stable group, witnessed by p (hence p is both the unique left-invariant and the unique right-invariant type of H);*
- 2. *H is the smallest among all type-definable subgroups H*′ *of G with* $p \in S_{H'}(\mathcal{U})$;
- 3. *H is both the left and the right stabilizer of p in G.*

Generic transitivity

Proposition

The following conditions are equivalent for a generically stable p:

- 1. $p \in S_{H_o}(\mathcal{U})$;
- 2. *a* ∈ Stabℓ(*p*′) *(where p*′ := *p|U*′ *is the unique extension of p to a bigger monster model U*′ *invariant over M);*
- 3. *for any/some* $(a_0, a_1) \models p^{(2)}$, $(a_0 \cdot a_1, a_0) \models p^{(2)}$;
- 4. *Same with "right" instead of "left":* $p \in S_{H_r}(\mathcal{U})$; $a \in \text{Stab}_r(p')$; *for any/some* $(a_0, a_1) \models p^{(2)}$, $(a_1 \cdot a_0, a_0) \models p^{(2)}$.

Definition

We will say that a generically stable type $p \in S_G(\mathcal{U})$ is *generically transitive* if it satisfies any of these equivalent conditions.

Problem

Assume that p is generically stable and idempotent. Is it then generically transitive?

Main theorem for types

Theorem

Assume $p \in S_G(\mathcal{U})$ *is generically stable and idempotent, and one of the following holds:*

- 1. *p is stable and M is arbitrary;*
- 2. *G is abelian and M is arbitrary;*
- 3. *G is arbitrary and M is inp-minimal;*
- 4. *G is arbitrary and M is rosy (e.g. if* Th(*M*) *is simple).*

Then p is generically transitive, hence it is the unique left-/right-invariant type on a type-definable subgroup of G(*U*) *(namely, the left-/right-stabilizer of p).*

- ▶ Remains open for general NIP groups.
- \blacktriangleright (2) and (3) rely on weight arguments, while (1), (4) rely on stratified rank arguments.

Generic transitivity = stable group theory localized at *p*

- \triangleright Generic transitivity is a sufficient and necessary condition for developing some crucial results of stable group theory localizing on a generically stable type.
- \triangleright Theorem 1. In an arbitrary theory, there is an analog of the stratified rank in stable theories restricting to subsets of *G*(*U*) definable using parameters from a Morley sequence in a generically stable type *p*. This rank is finite, and it is is left invariant (under multiplication by realizations of *p*) iff *p* is generically transitive.
- ▶ Theorem 2. (Adapting Hrushovski) If G is type-definable and $p \in S_G(\mathcal{U})$ is generically stable, idempotent and generically transitive, then its stabilizer is an intersection of *M*-definable groups.
- \triangleright Theorem 3. A chain condition for groups type-definable using parameters from a Morley sequence of a generically stable type *p* holds, implying that there is a smallest group of this form and it is equal to the stabilizer of *p* when *p* is generically transitive.

Keisler measures

- ◮ A *Keisler measure µ* in variables *x* over *A* ⊆ *U* is a finitely-additive probability measure on the Boolean algebra $\mathcal{L}_x(A)$ of *A*-definable subsets of \mathcal{U}_x .
- \triangleright $\mathfrak{M}_{x}(A)$ denotes the set of all Keisler measures in *x* over *A*.
- \blacktriangleright Then $\mathfrak{M}_{\times}(A)$ is a compact Hausdorff space with the topology induced from $[0,1]^{L_x(A)}$ (equipped with the product topology).
- \blacktriangleright A basis is given by the open sets

$$
\bigcap_{i
$$

with $n \in \mathbb{N}$ and $\varphi_i \in \mathcal{L}_x(A)$, $r_i, s_i \in [0, 1]$ for $i < n$.

- \blacktriangleright Identifying *p* with the Dirac measure δ_p , $S_x(A)$ is a closed subset of $\mathfrak{M}_{\mathfrak{X}}(A)$ (and the convex hull of $S_{\mathfrak{X}}(A)$ is dense).
- Every $\mu \in \mathfrak{M}_{\times}(A)$, viewed as a measure on the clopen subsets of $S_{x}(A)$, extends uniquely to a regular (countably additive) probability measure on Borel subsets of *S^x* (*A*); and the topology above corresponds to the weak^{*}-topology: $\mu_i \rightarrow \mu$ if *f* $fd\mu_i \to \int fd\mu$ for every continuous $f : S_{\lambda}(A) \to \mathbb{R}$.

Product and Morley sequences of Keisler measures

Definition

Let $\mu \in \mathfrak{M}_{\mathsf{x}}(\mathcal{U}), \nu \in \mathfrak{M}_{\mathsf{y}}(\mathcal{U})$ and suppose that μ is *Borel-definable*. Their Morley product $\mu \otimes \nu$ is the unique measure in $\mathfrak{M}_{\chi \chi}(\mathcal{U})$ such that for any $\varphi(x, y) \in \mathcal{L}_{x}(\mathcal{U})$, we have

$$
(\mu \otimes \nu)(\varphi(x, y)) = \int_{S_{\nu}(A)} F^{\varphi}_{\mu, A} d(\widehat{\nu|_A}), \text{ where:}
$$

- 1. μ is *A*-invariant and *A* contains all the parameters from φ ,
- 2. $F^{\varphi}_{\mu,A}: S_{\nu}(A) \to [0,1]$ is defined by $F^{\varphi}_{\mu,A}(q) = \mu(\varphi(x,b))$ for some (equivalently, any) $b \models q$ in \mathcal{U} .
- 3. $\nu|_A$ is the unique regular Borel probability measure on $S_\times(A)$ corresponding to the Keisler measure ν*|A*.

We define
$$
\mu^{(1)} := \mu(x_1)
$$
,
\n $\mu^{(n+1)}(x_1, ..., x_{n+1}) := \mu(x_{n+1}) \otimes \mu^{(n)}(x_1, ..., x_n)$, and
\n $\mu^{(\omega)} = \bigcup_{n < \omega} \mu^{(n)}(x_1, ..., x_n)$.

Generically stable measures, in arbitrary theories

▶ As for types [Pillay, Tanovic], in order to define generic stability for measures in arbitrary theories we want to take the strongest of the equivalent characterization under NIP.

Definition

[Hrushovski, Pillay, Simon] Let $\mu \in \mathfrak{M}_{\times}(\mathcal{U})$ and $M \prec \mathcal{U}$ a small model. A Borel-definable measure *µ* is *fim* (a *frequency interpretation measure*) over *M* if *µ* is *M*-invariant and for any *L*-formula $\varphi(x, y)$ there exists a sequence of formulas $(\theta_n(x_1, \ldots, x_n))_{1 \leq n \leq \omega}$ in $\mathcal{L}(M)$ such that:

1. for any $\varepsilon > 0$, there exists some $n_{\varepsilon} \in \omega$ satisfying: for any $k \geq n_{\varepsilon}$, if $\mathcal{U} \models \theta_k(\bar{a})$ then

$$
\sup_{b\in\mathcal{U}^{\gamma}}|\operatorname{Av}(\bar{a})(\varphi(x,b))-\mu(\varphi(x,b))|<\varepsilon;
$$

2. $\lim_{n\to\infty} \mu^{(n)}(\theta_n(\bar{x})) = 1$. We say that μ is *fim* if μ is *fim* over some small $M \prec U$.

Analog for compact groups: fim groups

Definition

An (∅-)type-definable group *G*(*x*) is *fim* if there exists a right *G*-invariant fim measure $\mu \in \mathfrak{M}_G(\mathcal{U})$ (where $\mathfrak{M}_G(\mathcal{U})$ is the space of measures supported on *G*), i.e. $\mu \cdot g = \mu$ for all $g \in G(\mathcal{U})$.

▶ A simultaneous generalization of [Pillay, Tanovic] for types in arbitrary theories, and of the previously known case for measures under the NIP assumption [Hrushovski, Pillay, Simon] (so an NIP group is fim iff it is *fsg*; fsg groups in *o*-minimal structures are precisely the definably compact groups):

Theorem

Suppose that $G(x)$ *is a* \emptyset -type-definable *fim group*, *witnessed by* μ *. Then we have:*

1.
$$
\mu = \mu^{-1}
$$
 (where $\mu^{-1}(\varphi(x)) := \mu(\varphi(x^{-1}))$;

- 2. *µ is left G-invariant;*
- 3. μ *is the unique left G-invariant measure in* $\mathfrak{M}_G(\mathcal{U})$;
- 4. μ is the unique right G-invariant measure in $\mathfrak{M}_G(\mathcal{U})$.

Convolution product of Keisler measures

Definition

Suppose that $\mu \in \mathfrak{M}_G(\mathcal{U})$ is Borel-definable. Then for any measure $\nu \in \mathfrak{M}_G(\mathcal{U})$, the (definable) *convolution of* μ *and* ν , denoted $\mu * \nu$, is the unique measure in $\mathfrak{M}_G(\mathcal{U})$ such that for any formula $\varphi(x) \in \mathcal{L}(\mathcal{U}),$

$$
(\mu * \nu)(\varphi(x)) = (\mu \otimes \nu)(\varphi(x \cdot y)).
$$

We say that μ is *idempotent* if $\mu * \mu = \mu$.

 \triangleright When *T* is NIP, it is enough to assume that μ is automorphism-invariant, and $*$ is left-continuous.

Idempotent fim measures and generic transitivity

- ► Let $G(x)$ be a \emptyset -type-definable group. For $\mu \in \mathfrak{M}_G(\mathcal{U})$, we let Stab $(\mu) := \{ g \in G(\mathcal{U}) : \mu \cdot g = g \}$ be the right-stabilizer of μ .
- ► When $\mu \in \mathfrak{M}_G(\mathcal{U})$ is a measure definable over $M \prec \mathcal{U}$, then Stab(μ) is an *M*-type-definable subgroup of $G(\mathcal{U})$.
- ▶ We let $H := \text{Stab}(\mu)$ and $f : (\mathcal{U}^{\times})^2 \to (\mathcal{U}^{\times})^2$ be the $(\emptyset$ -definable) map $f(x_1, x_0) = (x_1 \cdot x_0, x_0)$.

Proposition

Let $\mu \in \mathfrak{M}_G(\mathcal{U})$ be an *idempotent fim measure.* Then the *following are equivalent:*

\n- 1.
$$
\mu \in \mathfrak{M}_H(\mathcal{U});
$$
\n- 2. $\mu^{(2)} = f_*(\mu^{(2)})$ (i.e., the push-forward of $\mu^{(2)}$ under f);
\n- 3. $\mu \otimes p = f_*(\mu \otimes p)$ for every $p \in S(\mu)$.
\n

Definition

We say that an idempotent *fim* measure $\mu \in \mathfrak{M}_G(\mathcal{U})$ is *generically transitive* if it satisfies any of these equivalent conditions.

Idempotent fim measures and generic transitivity

Proposition

Assume μ *is fim and* $\mu \in \mathfrak{M}_H(\mathcal{U})$, where *H is either left or right stabilizer of µ. Then:*

- 1. *H is a fim group, hence µ is both the unique left-invariant and the unique right-invariant measure supported on H;*
- 2. *H is the smallest among all type-definable subgroups H*′ *of G with* $\mu \in \mathfrak{M}_{H'}(\mathcal{U})$;
- 3. *H is both the left and the right stabilizer of µ in G.*

Example

If *G*′ is a *fim* type-definable subgroup of *G*, witnessed by a *G*'-invariant *fim* measure $\mu \in \mathfrak{M}_{G'}(\mathcal{U})$, then μ is obviously idempotent and generically transitive.

Problem

Assume that $\mu \in \mathfrak{M}_G(\mathcal{U})$ *is fim and idempotent. Is it true that then µ is generically transitive? Assuming T is NIP?*

Idempotent fim measures and generic transitivity

Theorem

Assume that G(*x*) *is an abelian type-definable group and* $\mu \in \mathfrak{M}_{G}(\mathcal{U})$ *is fim and idempotent. Then* μ *is generically transitive.*

- ▶ In particular, if *T* is NIP and *G* is abelian, there is a one-to-one correspondence between generically stable idempotent measures and type-definable fsg subgroups of *G*.
- ▶ Our proof generalizes the bounded local weight argument from the case of types in a purely measure theoretic context, using some theory of fim groups, arguments with push-forwards and the following general result about fim measures:

Generically stable measures over "random" parameters

Theorem

Let $\mu \in \mathfrak{M}_x(\mathcal{U})$ *be fim over* $M, \nu \in \mathfrak{M}_y(\mathcal{U}), \varphi(x, y, z) \in \mathcal{L}_{xyz}$, $b \in \mathcal{U}^z$, and $\mathbf{x} = (x_i)_{i \in \omega}$. Suppose that $\lambda \in \mathfrak{M}_{\mathbf{x} \vee}(\mathcal{U})$ *is arbitrary such that* $\lambda|_{\mathbf{x},M} = \mu^{(\omega)}$ *and* $\lambda|_{\mathbf{y}} = \nu$ *. Then*

$$
\lim_{i\to\infty}\lambda(\varphi(x_i,y,b))=\mu\otimes\nu(\varphi(x,y,b)).
$$

Moreover, for every $\epsilon > 0$ *there exists* $n = n(\mu, \varphi, \epsilon) \in \mathbb{N}$ *so that for any* ν*,* λ*, b as above, we have* $\lambda(\varphi(x_i, y, b)) \approx^{\varepsilon} \mu \otimes \nu(\varphi(x, y, b))$ for all but *n* many $i \in \mathbb{N}$.

- \triangleright Generalizes the usual characterization of generically stable measures in NIP (when ν is a type).
- ▶ Our proof relies on the use of Keisler randomization in continuous logic [Ben Yaacov, Keisler] and the correspondence between measures and their properties in *T* and types (in the sense of continuous logic) in its randomization T^R [Ben Yaacov] (studied further [Conant, Gannon, Hanson]).

Thank you!

- ▶ "Definable convolution and idempotent Keisler measures", Artem Chernikov, Kyle Gannon, Israel Journal of Mathematics, 248 (2022), no. 1, 271-314
- ▶ "Definable convolution and idempotent Keisler measures II", Artem Chernikov, Kyle Gannon, Model Theory 2-2 (2023), 185-232
- ▶ "Definable convolution and idempotent Keisler measures III. Generic stability, generic transitivity, and revised Newelski's conjecture" Artem Chernikov, Kyle Gannon and Krzysztof Krupiński, arXiv:2406.00912