
Model-theoretic weight and algebraic examples

Artem Chernikov

September 7, 2011

Weight: History

I Introduced by Shelah for the classification program in stable
theories.

I Generalized to simple theories by Wagner, Pillay.

I Generalized to NIP by Shelah, Usvyatsov, Onshuus.

I Indiscernible arrays were considered by Kim, Ben Yaacov.

I Adler introduced a general definition.

Idiscernible sequences, due to Hodges

Idiscernible arrays

Cornelius Cardew, Treatise, pg. 183

Burden

Work in an arbitrary theory T . Let p(x) be a partial type.

An inp-pattern in p(x) of depth κ consists of (φα(x , yα))α<κ,
(aα,i)α<κ,i<ω and kα < ω such that:

1. {φα(x , aα,i)}i<ω is kα-inconsistent for each α < κ.

2. {φα(x , aα,f (α))}α<κ ∪ p(x) is consistent for any f : κ→ ω.

Adler: The burden of p(x), denoted bdn(p), is the supremum of
the depths of all inp-patterns in p(x). By bdn(a/C) we mean
bdn(tp(a/C)).

κinp(T) and NTP2

For a complete first-order theory T , we let κinp(T) be the smallest
infinite cardinal such that no finitary type has an inp-pattern of
depth κ in it.
Define κninp(T) similarly, but only looking at types in at most n
variables.

T is called NTP2 (No Tree Property of the second kind) if
κinp(T) <∞ (equivalently, κinp(T) < |T |+).

Examples

1. Picture.

2. If T is simple then it is NTP2.

3. If T is NIP then it is NTP2.

4. Assume that T eliminates ∃∞. Chatzidakis and Pillay show
that the expansion of T by a new unary predicate has a model
companion TP . If T is NTP2, then TP is NTP2. For example,
fusion of DLO with the random graph is NTP2.

However, e.g. triangle-free random graph has TP2.

One variable is enough

Shelah: Is κinp(T) = κninp(T) = κ1inp(T)?

Theorem: Burden is sub-multiplicative, that is if bdn(ai/C) < ki ,
finite, then bdn(a0...an/C) < k0 × ...× kn.

Corollary: Yes. In particular, if T has TP2, there is a formula
φ(x , y) witnessing it, with |x | = 1.

Burden in special cases

1. Adler: In a simple theory, burden of a type is the supremum of
the weights of its complete extensions.

2. In an NIP theory, burden corresponds to dp-rank. In
particular, NIP theories with κ1inp(T) = 1 are precisely
dp-minimal theories.

Hereditarily finite vs finite

Let’s say that T has hereditarily finite burden if there is no
inp-pattern of infinite depth.

Is it true that hereditarily finite burden implies finite burden? In
NIP?

Positive answer for simple theories follows from Hyttinen / Wagner.

Issue: Unless T is simple, types of finite burden need not exist, as
well as types of burden 1 need not exist in a theory of finite burden.
Example: Model companion of infinitely many linear orders and
model companion of two linear orders, respectively.

Dividing and forking

Recall:

1. φ(x , b) divides over C if there is a C -indiscernible sequence
(bi)i<ω such that b0 = b and {φ(x , bi)}i<ω is inconsistent.

2. φ(x , b) forks over C if φ(x , b) `
∨

i<n φi (x , bi) and each of
φi (x , bi) divides over C .

Kim: Let T be simple. Then φ(x , b) divides over C if and only if it
forks over C .

Not true in NIP: in circular order ”x = x” forks over ∅.

Lets say that C is an extension base if every p(x) ∈ S(C) does not
fork over C . Pillay: does forking = dividing over extension bases in
NIP?

Dividing and forking in NTP2

Not every indiscernible sequence witnesses dividing.

Kim: In a simple theory, if φ(x , b) divides over C , then some/every
Morley sequence in tp(b/C) witnesses dividing.

No longer true in NTP2 (and even NIP).

Theorem [Ch., Kaplan]. In NTP2 theories, if φ(x , b) divides over
M |= T , some/every strict Morley sequence in tp(b/M) witnesses
it.

In fact, this property is equivalent to T being NTP2.

Dividing and forking in NTP2

Corollary: In NTP2 theories, forking = dividing over any extension
base C .

Remark: Any model in any theory is an extension base. If T is
simple, o-minimal, C -minimal or ordered dp-minimal, then every
set C is an extension base. So, in particular, this generalizes work
of Kim on simple theories and of Dolich on o-minimal theories.

Non-forking spectrum of T

Let T be fixed. For M � N, let
Snf (N,M) = {p(x) ∈ S(N) : p does not fork over M}.

For κ ≤ λ, we let the non-forking spectrum of T be
fT (κ, λ) = sup{|Snf (N,M)| : |M| = κ, |N| = λ}.
In particular, fT (κ, κ) is the usual stability function.

We say that T has bounded non-forking if fT (κ, λ) ≤ g(κ) for
some function g : Card → Card .

Bounded non-forking and NIP

Fact: If T is NIP then it has bounded non-forking (bounded by
2κ).

Adler: If non-forking is bounded, then it is bounded by 22
κ

. Is
bounded non-forking equivalent to NIP?

Theorem [Ch., Kaplan]. T is NIP ⇔ T is NTP2 + non-forking is
bounded. In fact, works locally with respect to a fixed type.

False in general, example of Itay.

Work in progress, joint with Kaplan and Shelah: classify all
non-forking spectra.

Simple types

A (partial) type p(x) is called simple if D(p,∆, k) <∞ for every
finite ∆ and k . Equivalently, no φ(x , y) has tree property with x
ranging over p(M).

Obervation: If p(x) ∈ S(C) is simple, then for any a |= p(x) and
b, if a |̂

C
b, then b |̂

C
a.

Issue: for a formula φ(x , y), having tree property is not preserved
by flipping x and y . So, in general there is no reason for it to be
true exchanging the roles of a and b.

Theorem (answering a question of Casanovas): Let p(x) ∈ S(C)
be a simple type in an NTP2 theory, and C an extension base.
Then for any a |= p(x) and b, a |̂

C
b ⇔ b |̂

C
a.

Stronger than Lascar strong

We say that a and b have the same very strong type over C if they
are in the transitive closure of being connected by a Morley
sequence over C .

I Over a model, very strong type is determined by type.

I Kim: In simple theories, very strong type is determined by
Lascar strong type.

I Hrushovski-Pillay: In NIP theories, if C is an extension base,
then very strong type is determined by Lascar strong type.

Independence theorem for simple types

Theorem: Let p(x) ∈ S(C) be a simple type in an NTP2 theory,
and C an extension base. Let a1 |̂ C b1, a2 |̂ C b2, b1 |̂ C b2 and
a1, a2 have the same very strong type over C . Then there is
a |̂

C
b1b2 such that a ≡Cb1 a1 and a ≡Cb2 a2.

Application: T is simple ⇔ T is NTP2 and satisfies the
independence theorem over models.

(This also follows from a result of Kim, assuming existence of a
measurable cardinal.)

Decomposition?

We have two extreme classes of types in NTP2 theories:

I NIP types: set of non-forking extensions is bounded.

I Simple types: set of non-forking extensions satisfies
amalgamation.

I And, of course, if a type is both NIP and simple, then it is
stable.

Big questions: is it possible to analize arbitrary types in terms of
something like these?

Examples: Burden in valued fields

Let F be a valued field in the Denef-Pas language, that is
F = (F , k , Γ, v , ac), where k is the residue field, Γ is the value
group, v : F → Γ is the valuation map and ac : F → k is the
angular component.
Assume that F eliminates the field quantifier.

I Delon: If k is NIP, then F is NIP.

I Shelah: If k and Γ are strongly dependent, then F is strongly
dependent.

Theorem: There is a function f such that
κinp(F) ≤ f (κinp(k), κinp(Γ)). In particular, finiteness of burden
and NTP2 is preserved.

Examples: Ultraproduct of p-adics

Dolich, Goodrick, Lippel: Qp in the pure field language has
dp-rank 1.

Now let F =
∏

p primeQp/U for some non-principal ultrafilter U.

It has IP (as k is pseudo-finite) and strict order property, both in
the pure field language (as valuation is uniformly definable).

However, by the theorem, burden of F is finite. What is it exactly?

Examples: Mekler’s construction

Let T be a complete theory in a finite relational language.

Mekler: There is a complete theory T ′ in the pure group language
(in fact, nilpotent of class 2 and exponent p > 2), interpreting T
and preserving the number of types over models (+|T |).

Facts:

1. Mekler: If T is (super-)stable, then T ′ is (super-)stable.

2. If T is NIP, then T ′ is NIP.

3. Baudisch: If T is simple, then T ′ is simple.

Theorem: If T is NTP2, then T ′ is NTP2.

