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Continuous logic

>

v

Ben Yaacov, Berenstein, Henson, Usvyatsov “Model theory for
metric structures” (earlier variants by Chang-Keisler, Henson,
Every structure M = (M, ...) is a complete metric space of
bounded diameter, with a metric d.

Signature:

» function symbols with given moduli of uniform continuity
(interpreted as uniformly continuous functions from M" to M),

» predicate symbols with given moduli of uniform continuity
(interpreted as uniformly continuous functions from M to

[0,1]).
Logical connectives: the set of all continuous functions
[0,1] — [0, 1], or any subfamily which generates a dense

subset (e.g. {ﬁ,g,é ).
Quantifiers: “sup” for “V", “inf" for “3".

0is “True”, 1 is “False”.



Keisler randomization, 1

» Assume M is a first order structure in a language L.

» Given a first-order formula ¢(x) € £, what is the probability
that a random element from M satisfies this formula?

» Originally formalized by Keisler in classical logic, later by Ben
Yaacov and Keisler in continuous logic.

» Can be thought of as the structure consisting of the random
variables on some probability space taking valuee in M; as well
as a generalization of the ultraproduct construction, with an
ultrafilter replaced by an arbitrary measure.



Keisler randomization, 2

» Let Q be a set and (M,,),,cq a family of L-structures.

» The product ], cq M. consists of all functions a: Q — (J M,,
with a(w) € M,, for all w € Q. Function symbols and terms of
L are interpreted coordinatewise on [[ M,,.

> For p(x) e L,a€e ([, M,,)X! we define a function
(p(a)(w) 1w € Qs ™M (a(w)) € [0,1].

» A randomization M = Mg 7, is a continuous (pre-)structure
with two sorts (M, A) in LR s.t.

> (Q,F,pu) is a probability algebra and A = L;(11) C [0,1]?,

> M C [[ M, is non-empty, closed under function symbols and
(P(3)) € A for every predicate P(x) € £ and 3 € MIXI,

» the pseudo-metrics d(X,Y) =E(|X — Y|) on A and
d(a, b) = E(d(a, b)) = [, .o d(a(w), b(w))du on M.

» LR contains the function symbols from £, a function symbol
[P(x)] : MIXI — A for each predicate P € £, and the

signature {0, -, %,4} on A.



Keisler randomization, 3

> Given a randomization L£R-pre-structure M = (M, A), its
completion (the metric completion of the quotient by elements
at distance 0) is an £R-structure M = (M, A).

> When M =J[M,, A=0, 112, 4 := U is an ultrafilter on Q,
then A = [0, 1] and M is naturally identified with the
ultraproduct [[ M,,/U.

» We would like to axiomatize (and find a model companion) for
the theory of randomizations.

» A randomization (M, A) is full if Va# be M, X € Adc e M
s.t. c(w) = a(w) for all w € Q with X(w) =1, ¢(w) = b(w)
for all w with X(w) = 0, and c(w) is arbitrary otherwise.

» (M, A) is atomless if F is an atomless algebra.

» Ex: let M be a structure, (2, F, 1) an atomless probability
space, and M C M9 consits of all functions a : Q — M taking
at most countably many values in M, each on a measurable
set. Then the corresponding (M, .A) is a full atomless
randomization.



Keisler randomization, 4

Fact (Ben Yaacov)

1. For a fixed language L, there exists a continuous theory T{ so
that: an LR-structure is a model of TE if and only if it is
isomorphic to (M, A) for some full atomless randomization
(M, A), and for every ¢(X) € L and 3 € M* we have
(v(3)) = [»(3a)]-

2. Foran L-theory T, let TR := TR U{[¢] =0:p € T}. Then
TR eliminates quantifiers down to the formulas of the form
Efe(x)] with o(x) € L.

3. The types in S, (TR ) are in bijection with regular Borel
probability measures on the space S,(T). In particular if T is
complete, then so is TR.



Shelah's classification

» Classification theory: Shelah's dividing lines express limitations
on definable binary relations, by forbidding certain finitary
combinatorial configurations (stability, NIP, simplicity, see
Baldwin's talk).

> Often on the tame case, obtain consequences of the form:
types (over infinite sets) in more than one variable are
controlled by unary types, up to a “small error”
(e.g. stationarity of non-forking in stable theories, up to
algebraic closure).

» Emerging “n-classification theory”: types in any number of
variables are controlled by types in at most n-variables, up to a
“small error”.

» Here we focus on n-dependence introduced by Shelah:



N-dependent theories

> Given an (n+ 1)-ary relation E C [];;«,.; Xi and d € N, we
write VC,(E) < d if there do not exist sets A; C X; with
|Ail > d for 1 <i<nand bs € Xyp1 for S C[[;;,Aiso
that o
(a1,...,an,bs) € E < (a1,...,an) €S

for all (a1,...,an) € [[1<i<p A

» Write VC,(E) < oo and say E is n-dependent if VC,(E) < d
for some d € N.

» A theory T is n-dependent if every formula ¢o(x1, ..., Xp+1),
with x; a tuple of variables, defines an n-dependent relation in
any model of T.



N-dependent theories: basic facts and examples

» The case n = 1 corresponds to NIP.

» The property VC, < oo is preserved under permutations of
variables and Boolean combinations, and n-dependence of a
theory is witnessed by formulas with all but one variable
singletons.

» Examples of n-dependent theories:

>

>

For n > 2, the theory of the generic n-hypergraph is strictly
n-dependent (i.e. n-dependent, but not (n — 1)-dependent).
[C., Hempel] For each n > 2, there exist strictly n-dependent
pure groups.

[Cherlin, Hrushovski] Smoothly approximable structures are
2-dependent.

[C., Hempel] For n > 2, non-degenerate n-linear forms on
vector spaces over NIP fields are strictly n-dependent.
Conjecturally, there are no strictly n-dependent (pure) fields
for n > 2.



N-dependence in continuous logic

>

>

Stability, NIP, etc. all have natural generalizations in
continuous logic.

Given a function f : [];.;<,. 1 Xi — [0,1] and a countable
sequence d = (d, s € N:r <s€Qn0,1]), we write
VC,(f) < d if for each r < s € QN [0,1] there do not exist
sets A; C X with |A;| > d, s for 1 <i < nand bs € X,y for
S C[Ii<;<, Ai so that

(a1,...,an) €S = f(a1,...,an, bs) >
(a1,...,an) ¢ S = f(a1,...,an,bs) <r

A function f is n-dependent, written VC,(f) < oo, if
VC,(f) < d for some sequence d.

A continuous theory T is n-dependent if for every (continuous)
formula in n+ 1 tuples of variables, the function from any
model of T to [0, 1] defined by it is n-dependent.



Randomization and classification

Fact

» [Ben Yaacov, Keisler] If T is (Ro-, super-) stable, then TR is
also (No-, super-) stable.

» [Ben Yaacov] If T is NIP, then TR is also NIP.

» [Ben Yaacov] If T is not NIP, then TR has TP,. In particular
simplicity is not preserved. But at least:

» [Ben Yaacov, C., Ramsey] If T is NSOPy, then TR is also
NSOP;.

Theorem (C., Towsner)
For every n > 1, if T is n-dependent, then TR is also n-dependent.



Preservation of NIP: key point

» Ben Yaacov's proof, using relative quantifier elimination in T®
and that composing NIP functions with continuous functions
[0, 1]¥ — [0, 1] preserves NIP, reduces to showing that
E[e(x)] is NIP assuming ¢ is NIP, i.e. the average of a
“uniformly NIP" family of functions is NIP (the case n =1 of
the theorem below).

» Ben Yaacov establishes this by developing elements of the
VC-theory for real valued functions (connected to some earlier
work of Talagrand and others).



A generalization to n-dependence

Theorem (C., Towsner)

For every k € N>1 and d there exists some D satisfying the
following.

Assume f - Hie[n+2] Vi — [0,1] is a function and (Vy42, F, 1) a
probability space, so that

» for any fixed X € ||

ic[nt1] Vi the function w — f(X,w) is
measurable;

» for any fixed w € Q, the function f,, : X — f(X,w) satisfies

VC,(f,) < d.
Then the “average” function f' : [Tic(n+1) — [0,1] defined by

(X1, Xka1) :—/ Qf(Xl,---,Xk+17W)dM
we

satisfies VC,(f') < D.



Generalized indiscernibles, 1

» T is a theory in a language £, M = T.

» Let / be an L'-structure. Then 3= (a; : i € 1), with a; a tuple
in M, is I-indiscernible if for all i,..., iy and j1,...,j, from I:

qftpl:/ (il,...,in) = qftp£/ (j]_,...,jn) —
tp (aiy, - .-, ai,/C) =tps(ap,..-,a,/C).

» Say that (bj : j € /) is based on (a; : i € I) if for any finite set

A of L-formulas and (jo, . . .,jn) from [ there is some
(i1y...,0p) from [ s.t.
aftpz, (1, Jn) = aftpg, (i1, ..., in), and

tpa (bﬂ,.. bj,) = tpa (aiy,-- - ai,) -

» The usual indiscernible sequences correspond to the case when
I is a linear order.



Generalized indiscernibles, 2

> Let K be a class of finite Lo-structures. For A, B € K, let (i)
be the set of all A’ C B s.t. A = A.

» KCis Ramsey if for any A, B € K and k € w there is some
C € K s.t. for any coloring f : (g) — k, there is some
B e (g) st. f (’f") is constant.

» The usual Ramsey theorem: the class of finite linear orders is
Ramsey.

» [Scow]| Let K be a Fraissé class of finite structures, and let /
be its limit. If K is Ramsey, then for any 3 indexed by / there
exists (in M) an /-indiscernible based on it.

» [Nesétril, R6dl], [Abramson, Harrington] For any k € N>, the
class of all finite ordered (partite) k-hypergraphs is Ramsey
(let OHy denote its Fraissé limit).



Step 1: a sufficiently indiscernible witness

> Assuming that the theorem fails, using some analytic
arguments and extracting an indiscernible, we can thus find
some r < s,q >t € [0,1] and an OH p41-indiscernible 3 in
some expansion of the language making the measure
definable so that

O/H,H_l ): R(gl,...,g,H_l) —

M({w : f(ag17"')agn+1>w) < r}) Z q and
OH”+1 ): _‘R(glv"‘ 7gn+1) =
p({w: fag, .-, ag,.,w) <s}) <t

» This indiscernibility guarantees certain “exchangeability” in the
probabilistic sense. Exchangeability theory: exchangeable
sequences [de Finetti] and arrays [Aldous-Hoover-Kallenberg]
of random variables can be presented “up to mixing” using i.i.d.
random variables (parallel to the hypergraph regularity lemma),
and we need a certain generalization to relational structures.



Exchangeable random structures

> Let £'={R{,..., R}, R arelation symbol of arity r/. By a
random L'-structure we mean a (countable) collection of
random variables

(gg ik, A€ Nrf')

on some probability space (Q, F, 1) with £5: Q — {0,1}.

» Let now £ = {Ri,..., R¢} be another relational language,
with R; a relation symbol of arity r;, and let M = (N,...) be a
countable £-structure with domain N. We say that a random

L'-structure (ﬁ’ﬁ cie[k],ne N’i/) is M-exchangeable if for
any two finite subsets A = {ay1,...,a},A' ={a},...,a} CN
qftpy (a1, ..., ar) = qftpy (ay,...,a) =

(¢heieW)neat) = (& ic k] ne A)7).



A higher amalgamation condition on the indexing structure

>

>

Let IC be a collection of finite structures in a relational
language L.
For n € N>1, we say that K satisfies the n-disjoint
amalgamation property (n-DAP) if for every collection of
L-structures (M; = (M;,...) : i € [n]) so that

» each M, is isomorphic to some structure in IC,

> M; =[n]\ {i}, and

> Miliap iy = Mjlimgigy forall i # j € [n],
there exists an L-structure M = (M, ...) isomorphic to some
structure in K such that M = [n] and M|\ ¢y = M for
every 1 << n.
We say that an L-structure M satisfies n-DAP if the
collection of its finite induced substructures does.

Ex.: the generic k-hypergraph Hy satisfies n-DAP for all n,
but (Q, <) fails 3-DAP.



Presentation for random relational structures

Fact (Crane, Towsner)

Let £/ ={R!:i e[k}, L={R;i: i€ [k]} be finite relational
languages with all R of arity at most r’, and M = (N, ...) a
countable ultrahomogeneous L-structure that has n-DAP for all

n > 1. Suppose that (5;—, i e[K],ne Nri/> is a random
L'-structure that is M-exchangeable, such that the relations R! are
symmetric with probability 1.

Then there exists a probability space (', F', 1'), {0, 1}-valued
Borel functions fi, ..., f. and a collection of Uniform|0, 1]

i.i.d. random variables (s : s C N,|s| < r') on V' so that

(Sf—, ielk],ne Nf,-’) _ dist
(6 (Mlmg (Glscrmgs) ¢ € [K].7 € NF)

where rng i1 is the set of its distinct elements, and C denotes
“subsequence”.



Step 2: getting rid of the ordering

» Our counterexample is only guaranteed to be
O™H py1-exchangeable (and the ordering is unavoidable in the
Ramsey theorem for hypergraphs) — but the presentation
theorem requires n-DAP.

» We show that OH ,-exchangeability implies
‘H ,-exchangeability, using that the theory of probability
algebras is stablel

» Implicit in [Ryll-Nardzewski], explicit in [Ben Yaacov], a more
general result by [Hrushovski] (proved using array de Finetti),
and [Tao] gives an elementary proof:

Fact

For any 0 < p < q < 1 there exists N satisfying: if (V,F,u) is a
probability space, and Ay, ..., A, By,..., B, € F satisfy

w(AiN Bj) > q and n(AjN B;) < p forall1 <i < j<n, then
n<N.



Step 3: finding a common point

> Applying the exchangeable presentation to the counterexample
and working with independent random variables, we show that
for any finite set S C OH 11, the following set has positive

measure:
ﬂ {weQ:fag,...,ag,,,w)<rin
g€Rls
ﬂ Q\{weQ:f(ag,...,ag,,,w)<s}
ge—RJs

» By saturation we then find w € Q so that for all (n+ 1)-tuples
g in OHpy1 we have:
> g€ R = f(ag,...,ag,.,,w)<r,
> 2¢ R = f(ag,...,ag,.,,w) > s.

» This contradicts the assumption VC,(f,) < oo.



Thank youl!
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