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» The trichotomy principle in model theory: in a sufficiently
tame context (certain strongly minimal, o-minimal), every
structure is either “trivial”, or essentially a vector space
(“modular”), or interprets a field.

» Asymptotic sizes of the intersections of definable sets with
finite grids in certain model-theoretically tame contexts reflect
the trichotomy principle, and detect presence of algebraic
structures (groups, fields).

» Instances of this principle are well-known in combinatorics —
extremal configuration for various counting problems tend to
come from algebraic structures. Here we discuss “inverse”
theorems which show this is the only way.



Sum-product and expander polynomials

» [Erdés, Szemerédi'83] There exists some ¢ € R~ such that:
for every finite A C R,

max{|A+ A, |A- Al} = Q (JAI"°).

> [Solymosi], [Konyagin, Shkredov] Holds with § + & for some
sufficiently small € > 0. (Conjecturally: with 2 — & for any ¢).

» [Elekes, Rényai'00] Let f € R[x, y] be a polynomial of degree
d, then for all A, B C, R,

If (A x B)| = Qu (n%) ,

unless f is either of the form g(h(x) + i(y)) or g(h(x) - i(y))
for some univariate polynomials g, h, i.



Elekes-Szabé theorem

> [Elekes-Szab6'12] provide a conceptual generalization: for any
algebraic surface R(xi, x2,x3) C R3 so that the projection
onto any two coordinates is finite-to-one, exactly one of the
following holds:

1. there exists v > 0 s.t. for any finite A; C,, R we have
RN (A1 x Ay x A3)| = O(n*77).

2. There exist open sets U; C R and V C R containing 0, and
analytic bijections with analytic inverses 7; : U; — V such that

7T1(X1) + 7T2(X2) + 7T3(X3) =0« R(Xl,X27X3)

for all x; € U..



Generalizations of the Elekes-Szabé theorem

Let R C X; X ... x X, be an algebraic surface (or just a definable
set) with finite-to-one projection onto any r — 1 coordinates and
dim(X;) = m.

1.

[Elekes, Szab6'12] r = 3, m arbitrary over C (only count on
grids in general position, correspondence with a complex
algebraic group of dimension m);

[Raz, Sharir, de Zeeuw'18] r = 4, m =1 over C;

[Raz, Shem-Tov'18] m = 1, R of the form f(xi,...,x,—1) = X,
for any r over C.

4. [Hrushovski'13] Pseudofinite dimension, modularity

[Bays, Breuillard'18] r and m arbitrary over C, recognized that
the arising groups are abelian (no bounds on 7);

Related work: [Raz, Sharir, de Zeeuw'15], [Wang'15]; [Bukh,
Tsimmerman' 12], [Tao'12]; [Jing, Roy, Tran'19].

[C., Peterzil, Starchenko] Any r and m, any o-minimal
structure or stable with a distal expansion and explicit bounds
on . A special case:



One-dimensional o-minimal case

Theorem (C., Peterzil, Starchenko)

Assume r > 3, M is an o-minimal expansion of R and R C R" is
definable, such that the projection of R to any r — 1 coordinates is
finite-to-one. Then exactly one of the following holds.

1. For any finite A; C, R, i € [r], we have
IRA (AL % ... x A)| = O (n"277)

where v = % ifr>4, and v = % ifr=3.
2. There exist open sets U; C R, i € [r], an open set V C R
containing 0, and homeomorphisms w; : U; — V such that

771(X1) +e +7Tr(Xr) =0« R(Xla ce 7Xr)

for all x; € U;,i € [r].



General o-minimal case

Theorem (C., Peterzil, Starchenko)

Let M be an o-minimal expansion of R. Assume r > 3,

R C X1 x -+ x X, are definable with dim (X;) = m, and the
projection of R to any r — 1 coordinates is finite-to-one. Then
exaetly one of the following holds.

1. For any finite A; C,, X; in general position, i € [r], we have
RN (AL % ...x A)| = Og(n177),
for’y:ﬁ If-524-, and'y:m IfS:?)
2. There exist definable relatively open sets U; C X;, i € [s], an
abelian Lie group (G, +) of dimension m and an open

neighborhood V C G of 0, and definable homeomorphisms
mi: Ui — V, i €[s], such that for all x; € U;,i € [s]

mi(x1) + -+ 7ms(xs) =0 < R(xq, ..., Xs).



Remarks

1. If M is o-minimal but is not elementarily equivalent to an
expansion of R — only get correspondence with a
type-definable group.

2. One ingredient — “Szémeredi-Trotter"-style bounds in
o-minimal, and more generally distal structures.

3. Another — a higher arity generalization of the Abelian Group
Configuration theorem of Zilber and Hrushovski on recognizing
groups from a “generic chunk”, along with a purely
combinatorial version.



First ingredient: Recognizing groups, 1

1. Assume that (G, +,0) is an abelian group, and consider the
r-ary relation R C Hie[r] G given by x; + ...+ x, = 0.

2. Then R is easily seen to satisfy the following two properties,
for any permutation of the variables of R:

Vx1, .o, Vo1 A R(X1, ooy Xp ), (P1)
Vx1, xVys, ... Y VYS, ,y;(R(i,y) AR(x,7) — (P2)

(Vx1, 3 R(X', 7) > R()?’,y/)))

We show a converse, assuming r > 4:



Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)

Assume r € N>4, X1,..., Xy, and R C Hl-e[r] X; are sets, so that R
satisfies (P1) and (P2) for any permutation of the variables. Then
there exists an abelian group (G, +,0¢) and bijections 7w; : X; — G
such that for every (a1,...,a,) € Hie[r] X; we have

R(a1,...,a;) <= mi(a1) +...+ 7 (ar) = 0¢.

> If Xy =...= X, property (P1) is equivalent to saying that
the relation R is an (r — 1)-dimensional permutation on the
set Xy, or a Latin (r — 1)-hypercube, as studied by Linial and
Luria. Thus the condition (P2) characterizes, for r > 3, those
Latin r-hypercubes that are given by the relation
“X1+ ...+ x—1=x/"in an abelian group.

» If R is definable and X; are type-definable in a (saturated) M,
then G is type-definable and m; are relatively definable in M.



Recognizing groups in the stable case

» In the stable version of our theorem, we only get “generic
correspondence” with a type-definable group.

» An r-gonis a tuple a1, ..., a, such that any r — 1 of its
elements are (forking-)independent, and any element in it is in
the algebraic closure of the other ones.

» An r-gon is abelian if, after any permutation of its elements,

we have ajar J/ad(alaz)mad(a%ar) as...ar.

» If (G,") is a type-definable abelian group, gi,...,g—1 are
independent generics in G and g, := g1 ... g1, then
g1, ---,& is an abelian r-gon (associated to G).

» Conversely,

Theorem (C., Peterzil, Starchenko; independently Hrushovski)

Let r > 4 and a1, ..., a, be an abelian r-gon. Then there is a
type-definable (in M®9) connected abelian group (G, -) and an
abelian r-gon g1, ..., gs associated to G, such that after a base

change each g; is interalgebraic with a;.



Second ingredient: distality

Definition

A structure M is distal if and only if for every definable family
{¢(x,b) : b€ M,} of subsets of M, there is a definable family
{6(x,¢):ce Mf} such that for every a € M, and every finite set
B C M, there is some ¢ € B¥ such that:

> al=0(xc);
> 0(x,c) - tp,(a/B), that is for every &’ =0 (x,c) and b€ B
we have 2’ = ¢ (x,b) & a = ¢ (x, b).



Examples of distal structures

>
| 4

M distal = M is NIP, unstable.

Examples of distal structures: (weakly) o-minimal structures,
various valued fields of char0 (e.g. Q,, RCVF, the valued
differential field of transseries).

Stable structures with distal expansions: ACFg, DCFq ,,, CCM,
abelian groups, Hrushovski constructions*.

Stable structures without distal expansions: ACF, [C.,
Starchenko'15], a disjoint union of finite expander graphs

(e.g. Ramanujan graphs) of growing degree and expansion
[Jiang, Nesetril, Ossona de Mendez, Siebertz'20].

Problem. Do non-abelian free groups have distal expansions?



Number of edges in a K, «-free hypergraph

» The following fact is due to [K&vari, Sés, Turan'54] for r = 2
and [Erd&s'64] for general r.

Fact (The Basic Bound)
If His a Ky . k-free r-hypergraph then |E| = Oy (nf—ﬁ)'

» So the exponent is slightly better than the maximal possible r
(we have n" edges in K, .. ). A probabilistic construction in
[Erd6s'64] shows that it cannot be substantially improved.



Bounds for graphs definable in distal structures

» Generalizing [Fox, Pach, Sheffer, Suk, Zahl'15] in the
semialgebraic case, we have:

Fact (C., Galvin, Starchenko'16)

Let M be a distal structure and R C M,, x M,, a definable
relation. Then there exists some ¢ = (R, k) > 0 such that for any
A1 C, MXI,AQ Ch Mer ifE:=RN (Al X A2) is KkJ{—free then
|E| = Og«(n'~%), where t is the exponent given by the Basic
Bound for arbitrary graphs.

> In fact, € is given in terms of k and the size of the smallest
distal cell decomposition for R.

» Eg if RC M? x M? for an o-minimal M, then t — ¢ = %
([C., Galvin, Starchenko'16]; independently, [Basu, Raz'16]).



Recognizing fields

» For the semialgebraic K> >-free point-line incidence relation
R ={(x1,x2;y1,y2) € R* : x2 = y1x1 + yo} CR? x ]R24we
have the (optimal) lower bound |R N (V4 x Vo)| = Q(n3).

» To define it we use both addition and multiplication, i.e. the
field structure.

» This is not a coincidence — any non-trivial lower bound on the
Zarankiewicz exponent of R allows to recover a field from it:

Theorem (Basit, C., Starchenko, Tao, Tran)

Assume that M = (M, <,...) is o-minimal and

R C My, x ... x M, is a definable relation which is K. _x-free,
but [R N []ien Vil # O(n"1) for V; Cp M. Then a real closed
field is definable in the first-order structure (M, <, R).



Ingredients

» An (almost) optimal bound on the number of edges in
Kk.,... k-free hypergraphs definable in locally modular o-minimal
expansions of groups, so e.g. for semilinear (= definable in
(R, <,+)) hypergraphs.

» The trichotomy theorem for o-minimal structures [Peterzil,
Starchenko'98].



A matroid associated to an o-minimal structure

» Given a structure M, A C M and a finite tuple a in M,

a € acl(A) if it belongs to some finite A-definable subset of
M2l (this generalizes linear span in vector spaces and algebraic
closure in fields).

» dim(a/A) is the minimal cardinality of a subtuple &’ of a so
that acl(aU A) = acl(a’ U A) (in an algebraically closed field,
this is just the transcendence degree of a over the field
generated by A).

» Given a finite tuple a and sets C, B C M, we write a J/c B to
denote that dim (a/BC) = dim (a/C).

» In an o-minimal structure, | is a well-behaved notion of
independence defining a matroid.



Local modularity

» An o-minimal structure is (weakly) locally modular if for any
small subsets A, B C M = T there exists some small set

C L@ AB such that A | acl(AC)Nacl(BC) B.

» Intuition: the algebraic closure operator behaves like the linear
span in a vector space, as opposed to the algebraic closure in
an algebraically closed field.

» In particular, an o-minimal structure is locally modular if and
only if any normal interpretable family of plane curves in T has
dimension < 1.



Bound for semilinear relations

Theorem (Basit, C., Starchenko, Tao, Tran)

Let M be an o-minimal locally modular expansion of a group and
Q a definable relation of arity r > 2. Then for any ¢ > 0 and any
Vi with |V;| = n such that E == QN Vi x ... x V. is Ky -free,
we have

|E| — OQ,k,a (nr—l—l-e) )

Moreover, if Q itself is K. -free, then for any V; with |Vi| = n
we have
|E| = Og(n").



Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko'98)

Let M be an o-minimal (saturated) structure. TFAE:
» M is not locally modular;
» there exists a real closed field definable in M.

» [Marker, Peterzil, Pillay'92] Let X C R" be a semialgebraic
but not semilinear set. Then - [[g 1} is definable in
(R, <, 4+, X). In particular, it is not locally modular.

» Combining this with the optimal bound in the locally modular
case, we get the result.

» Problem: is it possible to establish a more direct
correspondence between the relation with many edges and the
point-line incidence relation in a field?



An application to incidences with polytopes
» Applying with r = 2 we get the following:

Corollary

For every s, k € N there exists some o« = af(s, k) € R satisfying the
following.

Let d € N and Hy, ..., Hy C R be finitely many (closed or open)
half-spaces in RY. Let F be the (infinite) family of all polytopes in
RY cut out by arbitrary translates of Hy, ..., Hy.

For any set Vi of ny points in RY and any set V> of ny polytopes in
F, if the incidence graph on Vi x V5 is K k-free, then it contains
at most an (log n)? incidences.

» In particular (this corollary was obtained independently by
[Tomon, Zakharov]):

Corollary

For any set V4 of ny points and any set V, of ny (solid) boxes with
axis parallel sides in RY, if the incidence graph on Vi x Vs is

Kk k-free, then it contains at most Oy x (n(log n)?) incidences.



Dyadic rectangles and a lower bound

| 4
>

Is the logarithmic factor necessary?

We focus on the simplest case of incidences with rectangles
with axis-parallel sides in R?. The previous corollary gives the
bound Oy « (n(log n)*).

A box is dyadic if it is the direct products of intervals of the
form [s2, (s 4 1)2%) for some integers s, t.

Using a different argument, restricting to dyadic boxes we get
a stronger upper bound O (nlogﬁ)glm), and give a construction

showing a matching lower bound (up to a constant).
[Tomon, Zakharov] use our construction to disprove a
conjecture of Alon, Basavaraju, Chandran, Mathew, and
Rajendraprasad regarding the maximal possible number of
edges in a graph of bounded separation dimension.

Problem
What is the optimal bound on the power of logn? In particular,
does it have to grow with the dimension d?
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