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Hypergraphs and Zarankiewicz's problem

» We fix r € N>o and let H = (V4,..., V,; E) be an r-partite
and r-uniform hypergraph (or just r-hypergraph) with vertex
sets Vi,..., V, with |Vi| = n;, (hyper-) edge set
E C g Vioand n= >-i_4 n; is the total number of
vertices.

» When r = 2, we say "bipartite graph” instead of
“2-hypergraph”.

» For k € N, let K . x denote the complete r-hypergraph with
each part of size k (i.e. V; = [k] and E = [];c( Vi)-

» His Ky . k-freeif it does note contain an isomorphic copy of
K,....k-

» Zarankiewicz's problem: for fixed r, k, what is the maximal
number of edges |E| in a K . -free r-hypergraph H? (As a
functions of ny,...,n,).



Number of edges in a K, «-free hypergraph

» The following fact is due to [K&vari, Sés, Turan'54] for r = 2
and [Erd6s'64] for general r.

Fact (The Basic Bound)
1
If H'is a K, . k-free r-hypergraph then |E| = Oy (nrfkfl).

» “= O, x(—)" means “< ¢ - —" for some constant ¢ € R
depending only on r and k.
» So the exponent is slightly better than the maximal possible r

(we have n" edges in K, . ). A probabilistic construction in
[Erd8s'64] shows that it cannot be substantially improved.



Families of hypergraphs induced by definable relations

» Let M = (M,...) be a first-order structure in a language L,
and let R C M,, x ... x M,, be a definable relation on the
product of some sorts of M.

> We let Fr be the family of all finite r-hypergraphs induced by
R, i.e. hypergraphs of the form

H= (Vl, . VuR rV1><...><Vr)

for some finite V; C My, i € [r].

» Question. What properties of the structure M are reflected
by the Zarankiewicz-style bounds for the families of
hypergraphs Fg with R definable in M?



Point-line incidences, char p

>

>

Let K |= ACF, be an algebraically closed field of positive
characteristic.

Let R C K2 x K? be the (definable) incidence relation
between points and lines in K2, i.e.

R(x1,x2; y1,y2) <= x2 = y1x1 + ya.

Note that R is K> o-free (there is a unique line through any
two distinct points).

Let g be a power of p, then F; C K and we take

Vi = Vo = (Fq)? (i.e. the set of all points and the set of all
lines in IF%) E=Rlv,xv,. Then H=(Vy, Vo, E) € Fg.
We have |Vi| = |V»| = g% and |E| = q|V»| = ¢°.

Let n:= g, then |V;| = |Va| = n and |E| > n? — matches
the Basic Bound for r = k = 2.



Points-lines incidences, char 0

» On the other hand, over the reals a bound strictly better than
the Basic Bound holds (3 < 3):

Fact (Szémeredi-Trotter '83)
Let R C R? x R? be the incidence relation between points and lines
in R2. Then every H € Fg satisfies |E| = O <n%).

» Known to be optimal up to a constant.
» In fact, the same holds in ACFg:

Fact (Téth '03)
Let R C C? x C? be the incidence relation between points and lines
in C2. Then every H € Fg satisfies |E| = O (ng)

» Reason: ACFy is a reduct of a distal theory, while ACF, is not.



Stronger bounds for hypergraphs definable in distal
structures

» Generalizing a result of [Fox, Pach, Sheffer, Suk, Zahl'15] in
the semialgebraic case, we have:

Fact (C., Galvin, Starchenko'16)

Let M be a distal structure and R C M,, x M,, a definable
relation. Then there exists some € = ¢(R, k) > 0 such that every
Ky k-free bipartite graph H € Fg satisfies |E| = Og x(n*~¢), where
t is the exponent given by the Basic Bound.

» In fact, € is given in terms of k and the size of the smallest
distal cell decomposition for R.

» E.g. if R C M? x M? for an o-minimal M, then t — ¢ = %
([C., Galvin, Starchenko'16]; independently, [Basu, Raz'16]).

» Bounds for R € M% x M% with M = RCF [Fox, Pach,
Sheffer, Suk, Zahl'15]; M is o-minimal [Anderson'20].



Connections to the trichotomy principle

» If M is sufficiently tame model-theoretically
(e.g. stable/geometric + distal expansion; or more concretely,
ACFq or o-minimal), the exponents in Zarankiewicz bounds
appear to reflect the trichotomy principle, and detect presence
of algebraic structures (groups, fields).

» Instances of this principle are well-known in combinatorics —
extremal configuration for various counting problems tend to
possess algebraic structure.



Example: detecting groups and Elekes-Szabé theorem

Fact (Elekes-Szabs'12)

Let M = ACFq be saturated, X1, X2, X3 strongly minimal definable

sets, R C X1 x Xo x X3 has Morley rank 2, and R is K i-free

under any partition of its variables into two groups. Then exactly
one of the following holds.

(a) For somee >0, |E| = O(n*>¢) for every H € Fg.

(b) there exists a definable group G of Morley rank and degree 1,
elements g; € G, «; € X; with a; and g; inter-algebraic (over
some set of parameters C) for i € [3], @ = (a1, a2,3) is
genericin R over C and g1 -g»-g3=1inG.



Some more recent generalizations:
» [Hrushovski'13];
> [Bays-Breuillard'18] for ACFg and R of any arity;
> [C., Starchenko'18] for M strongly minimal with a distal
expansion, R of arity 3;
» [C., Peterzil, Starchenko'20] M stable with distal expansion or
o-minimal, R of any arity, codimension 1.
Proofs combine “stronger than basic” Zarankiewicz bounds
with variants of the group configuration theorem.

In this talk — a new result showing that fields can be detected
from the exponents, at least in o-minimal structures and
working globally (i.e. working with all {Fg : R definable}
simultaneously rather with a single Fg).

Main new ingredient — even stronger Zarankiewicz bounds in
locally modular structures.



An abstract setting: coordinate-wise monotone functions

and basic relations

> Let V =[]icq Vi and (S, <) a linearly ordered set. A
function f: V — S is coordinate-wise monotone if
» for any i € [r],

> any a = (3);e(\ iy @ = (3)jerniiy € [ Vi
» and any b, b’ € V;

we have
/
f(a1,...,ai-1,b,ai11,...,ar) < f(ar,...,ai-1,b"ai41,. ..
<~
/ / / / / / / /
f(al,....ai_1,b,ajq,...,a;) < fay,...,ai_1, b a1, ..

,ar)

/
,ay).

> A subset X C V is basic if there exists a linearly ordered set

(S, <), a coordinate-wise monotone function f: V — S and

¢ € S such that X ={b e V: f(b) < (}.

> A set X C V has grid complexity < s if X is an intersection of

V with at most s basic subsets of V.



Example: semilinear relations of bounded complexity

> Let W be an ordered vector space over an ordered division ring
R. A set X C WY is semilinear if X is a finite union of sets of
the form

{xe Wd:f1(>'<)gO,...,fp(f()§0,fp+1(>'<)<0,...,fq(>'<)<0},
where p < g € N and each f; : V¢ — V is a linear function
f(xl,...,xd):)\1x1+...—|—)\dxd—|—a

for some \; € Rand a € V.
» Note that every linear function f is coordinate-wise monotone.
» Hence,ifd=dy+...+d,, X C W9 = Hie[r] W9 is of grid
complexity q.



Zarankiewicz bound for relations of bounded grid complexity

Theorem

For every integers r > 2,5 > 0,k > 2 there are « = a(r,s, k) € R
and 3 = pB(r,s) € N such that: for any finite Ky «-free
r-hypergraph H = (Va,..., V,; E) with E C [] 1 Vi of grid
complexity < s we have

ielr

|E| < an"*(logn)” .
Moreover, we can take B(r,s) = s(2"~1 —1).

> In particular, |E| = O, 4 (n""17¢) for any € > 0.

» Qur proof is by double recursion on the grid complexity and
the complexities of certain derived hypergraphs of smaller arity,
coordinate-wise monotone maps into linear orders are used in
the recursive step to pick the “middle point” splitting the
vertices in a balanced way.



Corollary for semilinear hypergraphs

Corollary

For every s, k € N there exist some o = «(r, s, k) € R and

B(r,s) := s(2r~1 — 1) satisfying the following.

Suppose that r >2.d =di+...+d, € Nand R C R% x ... xR
is semilinear and defined by < s linear equalities and inequalities.
Then for every Ky i-free r-hypergraph H € Fr we have

|E| < an"*(logn)” .



An application to incidences with polytopes, 1

» Applying with r = 2 we get the following:

Corollary

For every s, k € N there exists some o« = a(s, k) € R satisfying the
following.

Let d € N and Hy,...,Hy C R be finitely many (closed or open)

half-spaces in RY. Let F be the (infinite) family of all polytopes in
RY cut out by arbitrary translates of Hy, ..., Hy.

For any set V/q of ny points in RY and any set V5 of ny polytopes in
F, if the incidence graph on V1 x V> is K «-free, then it contains

at most an (log n)? incidences.



An application to incidences with polytopes, 2

» In particular (much better than the general semialgebraic
bound):

Corollary

For any set V4 of ny points and any set V, of n, (solid) boxes with
axis parallel sides in RY, if the incidence graph on Vi x Vs is

Kk k-free, then it contains at most Oy x (n(log n)?) incidences.

» Independently, a similar bound for the intersection graphs of
boxes [Tomon, Zakharov'20].



Dyadic rectangles and a lower bound

» |s the logarithmic factor necessary?

» We focus on the simplest case of incidences with rectangles
with axis-parallel sides in R?. The previous corollary gives the
bound Og.« (n(log n)*).

» A box is dyadic if it is the direct products of intervals of the
form [s2, (s 4+ 1)2%) for some integers s, t.

» Using a different argument, restricting to dyadic boxes we get
logn
loglogn

a stronger upper bound O (n ) and give a construction

showing a matching lower bound (up to a constant).

» [Tomon, Zakharov'20] get the upper bound Oy « (n(log n)) in
the Ky -free case, and use our lower bound construction to
provide a counterexample to a conjecture of [Alon, Basavaraju,
Chandran, Mathew, Rajendraprasad, 15] about the number of
edges in a graph of bounded “separation dimension”.

Problem
Does the power of log n have to grow with the dimension d?



Geometric weakly locally modular theories

| 2

In our bounds, we can get rid of the logarithmic factor entirely
restricting to the family of all finite r-hypergraphs induced by
a given Ky i-free relation (as opposed to all Kj _-free
r-hypergraphs induced by a given relation).

Recall that a complete first-order theory T is geometric if, in

any model M = T, the algebraic closure operator satisfies the
Exchange Principle and the quantifier 3°° is eliminated.

Hence, in a model of a geometric theory, acl defines a
well-behaved notion of independence | .

[Berenstein, Vassiliev] A geometric theory is weakly locally
modular if for any small subsets A, B C M |= T there exists

some small set C | , AB such that A | 2cl(AC)Nacl(BC) B.

E.g. any o-minimal theory T is geometric, and T is weakly
locally modular if and only if T is linear (i.e. any normal
interpretable family of plane curves in T has dimension < 1).



Bound for K.

.....

k-free relations in geometric weakly locally
modular structures

Theorem

Assume that T is a geometric, weakly locally modular theory, and
M T. Assume that r € N>p and R C My, x ... x My, is
definable and Kj . «-free. Then for every H € Fr we have

|E| = Or(n"™?).

Moreover, if T is distal, then can relax “Ki . «-free” to “does not
contain the direct product of r infinite sets”.

A related observation was made by Evans in the binary case for
certain stable theories.



Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko'98)

Let M be an o-minimal saturated structure. TFAE:
1. M is not weakly locally modular;
2. there exists a real closed field definable in M.

» Combining this with the previous theorem, we thus get:

Corollary
Let M be an o-minimal structure. TFAE:
1. M is weakly locally modular;
2. for every definable K, ._«-free r-ary relation R, every H € Fr
satisfies |[E| = O(n"1).
3. for every definable binary relation R, if all H € Fg satisfy
|E| = O(n*>~¢) for some ¢ > 0, then in fact |E| = O(n);
4. no infinite field is definable in M.



