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1. ULTRAFILTERS, ULTRAPRODUCTS AND ULTRALIMITS

1.1. Filters and ultrafilters. Let I be a set, and let P (I) denote the set of all
subsets of I. Given a subset S C I, we denote by =S the complement of S in I, i.e.

Definition 1.1. A filter on I is a collection F of subsets of I such that:
(1) IeF,b¢F,
(2) ABeF = ANBEF,
(3) Ae Fand ACBCI = BeF.

It follows from the definition that I € F and that the intersection of finitely
many sets in F is also in F. Intuitively, one can think of a filter as a collection of
“large” subsets of 1.

Example 1.2. (1) Assume that [ is an infinite set. Then F = {=S: S C I finite}
is the Fréchet filter on I.
(2) Fix a non-empty set A C I. Then F = {S CI:AC S} is the principal
filter generated by A.

Definition 1.3. We say that a filter U on [ is an ultrafilter if for every set S C I,
either S e U or =S € U.

Fact 1.4. For any filter F on I there is an ultrafilter U on I with F CU.

This fact is equivalent (modulo ZFC) to a weak form of the axiom of choice
called the Boolean prime ideal theorem.

Remark 1.5. (1) Ultrafilters are precisely the maximal filters (under inclusion).

(2) Assume that U is an ultrafilter on I, S € Y and S = S; U...US,. Then
S; € U for at least one 1 < i < n.

(3) Note that if a € I, then the principal filter generated by {a} is an ultrafilter.

(4) An ultrafilter U on I is non-principal if and only if it extends the Fréchet
filter on I. In particular, every infinite set admits a non-principal ultrafilter
on it.

(5) In fact, for any infinite set I there are 22" different non-principal ultrafilters
on it.

(6) For any infinite set S C N, there is an ultrafilter & on N with S € U.

Non-principal ultrafilters provide a tool for finding a “generic” object associated
to an infinite collection of objects. We will need two instances of this idea.

1.2. Ultralimits. Let (X, d) be a metric space, and let U be a non-principal ul-
trafilter on N.

Definition 1.6. Let (x,), .y be a sequence of points in X. The point z € X is
called the ultralimit of x,, (relatively to U), denoted = = limy, x,,, if for every € > 0
we have {n € N:d(z,,z) <e} €U.

Remark 1.7. (1) If an ultralimit of a sequence of points exists, then it is unique.
(2) If z = lim, 00 ¥, in the usual sense of metric limits, then x = limy, x,
(uses that U is non-principal).

Fact 1.8. If (X,d) is compact and U is a non-principal ultrafilter on N, then any
sequence of points in X has an ultralimit relatively to U.
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Corollary 1.9. Any bounded sequence (x, : n € N) of real numbers has a well-
defined ultralimit in R relatively to any non-principal ultrafilter on U (as closed
intervals are compact).

Of course, this limit depends on the ultrafilter. For example, let z,, = 0 if n is
even and x, = 1 if n is odd. Then limy; z,, = 0 for any ultrafilter &/ on N containing
the set of even numbers, and limy z,, = 1 for any ultrafilter on N containing the
set of odd numbers.

1.3. Some model-theoretic notation.
Definition 1.10. A (first-order) structure
M = (M7R17R27"'7f17f27"‘7cl762>"')

consists of an underlying set M, together with some distinguished relations R;
(subsets of M™i, n; € N), functions f; : M™ — M, and constants ¢; (distinguished
elements of M). We refer to the collection of all these relations, function symbols
and constants as the signature of M, or the language of M.

Example 1.11. A group can be naturally viewed as a structure (G7 Lt 71), as
well as a ring (R, +,-,0,1), an ordered set (X, <), a graph (X, E), etc.

Definition 1.12. A formula is an expression of the form

YW1y Ym) = V13m0 . VT 130G (1, o T YL, ey Yn)

where ¢ is given by a boolean combination of (superpositions of) the basic relations
and functions (and y1, ..., y, are the free variables of ).

We denote the set of all formulas by £. We also consider formulas with parame-
ters, i.e. expressions of the form 1 (gj7 13) with ¢ € £ and b a tuple of elements in M.
Given a set of parameters B C M, we let £ (B) = {1/) (g,l_J) s e Lbe B|b|}. If
¥ (y) € L (B) is satisfied by a tuple a of elements of M, we denote it as M = ¢ (a)
or a = ¢ (4), and we call @ a solution of ¢. If ¥ () is a set of formulas, we write
a = VU (7) to denote that a |= v () for all ¢» € ¥. Given a set A C M/®l, we denote
by 1 (A) the set {a € Al*l : M |= ¢ (A)} of all solutions of ¢ in A. We say that
X C M™is an A-definable set if there is some ¢ (T) € L (A) such that X = ¢ (M").
If 4 has no free variables, then it is called a sentence, and it is either true or false
in M. By the theory of M, or Th (M), we mean the collection of all sentences that
are true in M.

1.4. Ultraproducts of first-order structures. Let £ be a language and I an
infinite set. Suppose that M, is an L-structure for each i € I. Let U be an ultrafilter
on I. We define a new structure M = [[ M, /U, which we call the ultraproduct of
the M; modulo U.
e Define a relation ~ on X :=[],.; M; by:
given a = (a(@):i€l),b = (b(i):i€l)in X, a ~ b if and only if
{iel:a(i)=0()}clU.
e ~ is an equivalence relation on X (using that ¢/ is an ultrafilter), and given
a in X, we denote its ~-equivalence class by [a].
e The universe of M will be M = X/ ~/ i.e. the set of the equivalence classes
relatively to ~.
e If ¢ is a constant symbol of £, let ¢M := [(cMi 11 € I)]
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o If f(x1,...,2,) is a function symbol in £ and [a4], ..., [a,] € M, we define
Pa]s- s fan)) o= (M (0 (i), -0 (0)]

o If R(xy,...,x,) is a relation symbol in £, we define R* on M™ by saying
that R™ ([a1],...,[a,]) holds in M if and only if

{iel:M;E=R(a1(i),...,a, (1))} €U.
Exercise 1.13. Check that this is well-defined using the properties of ultrafilters.

Fact 1.14. (Los theorem) Let ¢ (x4, ..., xy) be an L-formula, and let M =[], M;i/U.
Then for any [a1], ..., [an] € M,

ME&(a1],...,[an]) <= {iel : M;E¢(ar1(i),...,a, (1)} €U.

Hence one can think of M as a “limit” of the structures M;,i € I: a formula
holds in M if it holds in M; for some/any large set of i € I (relatively to U).

Corollary 1.15. For each set of sentences T in L, every ultraproduct of models of
T is a model of T.

Corollary 1.16. (Compactness theorem of first-order logic) If T is a set of sen-
tences (of arbitrary cardinality) such that every finite subset Ty C T is consistent,
then T is consistent. (Ezercise)

Example 1.17. Let U be a non-principal ultrafilter on N. Let M; = ({0,1,...,i —1},<)
be a finite linear order on 7 elements. Let M := [],. M;/U, and let T := Th (M).

For any i € N, M; has the first and the last elements, and is a discrete linear order

(i.e. every element has immediate successor and predecessor) of size > i. Each of
these properties can be expressed by a first-order sentence. Hence, by L.os theorem,

M is an infinite discrete linear order with endpoints (these properties axiomatize

a complete first-order theory, hence determine T'). In fact, M 2 N+ 3" jer L+N7,
where L is a dense linear order without endpoints and N*. What is the cardinality

of M? We will find out soon.

Definition 1.18. Let M be an L-structure.

(1) Let A be a set of parameters in M. By a partial type ® (z) over A (where
x is an ordered tuple of variables) we mean a collection of £-formulas of
the form ¢ (z) with parameters from A such that every finite subcollection
has a common solution in M.

(2) By a complete type over A we mean a partial type such that for every
formula ¢ (z) € L (A), either ¢ (z) or =¢ (z) is in it. For b € M, we denote
by tp (b/A) the complete type of b over A, i.e.

tp (b/A) ={¢(z) : b= ¢ (z), 0 (x) € L(A)}.
(3) We say that a (partial) type ® (x) is realized in M if there is some b € M
satisfying simultaneously all of the formulas in ®.
Example 1.19. Let M = (R, +, x,0, 1) be the field of real numbers. The partial
type ® () = {z < n:n € N} over 0 is not realized in R (where n =1+ ...+ 1).
—_————
n times

Definition 1.20. Let « be a cardinal. A structure M is k-saturated if every partial
type over a set of parameters of size < k is realized in M.
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Consider again ® (z) from the previous example. It shows that R is not Ng-
saturated. Let U be a non-principal ultrafilter on N, and let R* := R?/U/. Then
® (z) is also a partial type over () in R*, and [(n:n € N)] is an element of R*
realizing @ (z) (using L.o§ theorem). More generally:

Proposition 1.21. Let £ be a countable language, (M; : i € N) a sequence of L-
structures and U a non-principal ultrafilter on N. Then the ultraproduct M =
[Licny Mi/U is Ny -saturated (i.e. every partial type over a countable set of param-
eters is realized in M ).

Proof. Let ® (z) be a partial type over a countable set of parameters A C M. As
L is countable, ® (z) can be enumerated as {¢, (z,[an]) : n € N}, ¢, (z,[ay]) €
L(M). Let Xog=Nand for 1 <n €N let

Xp={ieN: M;E o (x,a1 (D)) Ao Ay (2,0, (1))} N [0, 00).

As ® (z) is a partial type, every finite set of formulas from @ is realized in
M. In particular, M | Jz ¢y (z,[a1]) A ... A én (2, [as]) for all n € N. As U is
non-principal, by Lo§ theorem it follows that X,, € U for all n € N. Moreover,
MNpen Xn =0 and X, O X,,;1. Hence for every i € N there is a greatest n (i) € N
such that 7 € X, ;.

We define a sequence b = (b (i) : i € N) as follows. If n (i) = 0 let b (i) be an
arbitrary element in M;. If n(i) > 0, let b(i) be some element in M; realizing
¢1(x,a1 (D) Ao A by (2, ang) (i)

Now fix any n > 0. Then for any ¢ € X,, we have n < n (i), hence M; |
¢n (b(3),an (7). As X,, € U, it follows that M |= ¢y, ([b],[an]). As this holds for
any n, [b] realizes ® (z) in M. O

Note that every infinite k-saturated structure M has size at least x (if M| < &,
then {x #a:a € M} is a partial type over a set of size < k which cannot be
realized in M). If follows from Proposition that any ultraproduct relatively to
a non-principal ultrafilter in N is either finite or of size at least X;. In fact, more is
true.

Proposition 1.22. LetU be a non-principal ultrafilter on N. Then any ultraproduct
M = [],en Mi/U is either finite or of cardinality > N0,

Proof. Assume that M is infinite.
Claim 1. There is a family F of functions f : N — N such that:

(1) [F| = 2%,

(2) f(n) <2 forany f € Fand n € N,

(3) if f # g are in F, then {n: f (n) = g(n)} is finite.
Proof of Claim 1. For each A C N, let f4 : N — N be given by fa(n) =
> ien 14 (k) 2F, where 1, is the indicator function of A, i.e. 14 (k) = 1if k € 4,
and 14 (k) = 0 otherwise. Then F = {f4 : A C N} is as needed.

Claim 2. There is a set S € U and a partition S =
(1) A, ¢U for alln € N,
(2) if i € Ay, then | M;| > 2.
Proof of Claim 2. Let Sy = {¢ € N: M, is finite}, S1 = {i € N: M, is infinite}.
As N =5, U S;, we have S; € Y for some ¢ € {0,1}.

nen An such that:
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If Sp € U, we let S := Sy and let A, = {i € 5:2" < |M;| < 2"}, The sets
A, clearly partition N. Assume that A, € U for some n. As having at most 27*!
elements is a property of a structure expressible by a first-order sentence, it would
follow by Los theorem that |M| < 2"F1 — contrary to the assumption. Hence
A, ¢ U for all n € N.

If S1 €U, say S1 = {a; : i € N}, we can just take S = S; and A,, = {a,}.

Now for each i € A,,, by Claim 2 let {a; ; : j < 2"} be some 2" distinct elements
of M;. For f € F as in Claim 1, define ¢y € [[,cy Mi by ¢y (i) := a; f(n), where
n is such that i € A,,, when ¢ € S, and let ¢y (i) be an arbitrary element in M; if
i¢8S.

Note that if f # g are in F, then

Si={ieS:cs(i)=cg (i)} = J{An:n €N, f(n) = g(n)}
is a finite union of the sets A4,, ¢ U, hence S’ ¢ U. But then
S\S" ={ieS:cs(i)#cy (1)} €U,

which implies that [cs] # [cg]. Hence {[cf] : f € F} is a subset of M of size 2%, so
|IM| > 2%, O

Corollary 1.23. LetU be a non-principal ultrafilter on N, and assume that M;,i €
N is a countable L-structure. Then any ultraproduct M = [],.y Mi/U is either
finite or of size 280

Proof. Obviously |[T;ey Mi/U| < |[[Tien Mi| < |NN| = 2% and [M] > 2% by
Proposition [1.22 (]

i€N

Example 1.24. Returning to Example(l.17} we now know that [],c ({0,1,...,i — 1}, <) /U
is a linear order of the form N+ > ._, Z 4+ N*, where L is a dense Nj-saturated

linear order of cardinality 2%°.

JjeEL

Exercise 1.25. For i € N let M, be a graph (undirected, without self-loops) which
is a cycle on i vertices (i.e. M; = ({0,1,...,i— 1}, E) and the edges are {j,j + 1}
forall j =0,...,i —2 and {i — 1,0}). Let & be a non-principal ultrafilter on N.
Determine [, .y M;/U (up to isomorphism).

1.5. References. See e.g. [10] for a brief survey of further properties of the ultra-
product construction and references for the results in this section.

2. GRAPH REGULARITY AND MEASURES ON ULTRAPRODUCTS

2.1. Szemerédi’s regularity lemma. Szemerédi’s regularity lemma is a funda-
mental result in graph combinatorics with numerous applications in extremal com-
binatorics, additive number theory, computer science and other areas (see e.g. [11]
for a survey). It has many versions and strengthenings, we begin by considering its
simplest form.

Roughly speaking, the lemma asserts that every sufficiently large graph can be
partitioned into a small number of sets, so that on almost all pairs of those sets the
edges are approximately uniformly distributed at random.

More precisely, by a graph G = (V, E) we mean a set G with a symmetric subset
E C V2 For A,B C V we denote by E(A, B) the set of edges between A and B
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and by dg (A, B) = ‘?Xﬁ’g‘)‘ the density of the edges between A and B. For n € N,

we denote [n] ={1,2,...,n}.

Theorem 2.1. (Szemerédi’s regularity lemma) Let € > 0 be arbitrary. Then there
is some K = K (¢) € N such that for every finite graph G = (V,E) with |V| > K
there is a partition V.= Vi U---UVk into disjoint sets, real numbers d;;,1,j € [K],
and an exceptional set of pairs ¥ C [K] x [K] such that

Y Wil <elvp?
(4,5)€E
and for each (i,7) € [K] x [K]\ ¥ we have
[1E(A, B)| = di;| Al|B[ | < e|Vil[Vj]

for all ACV;, BCV,. We call a pair of sets (V;,V;) with (i,7) € [K] x [K]\ X
an e-regular pair.
Exercise 2.2. (1) We can take ¢;; = dg (V;,V;) = W — the edge den-
sity between V; and V; (at the price of possibly doubling the error).
(2) The regularity condition can be rephrased as: |dg (4, B) —dg (V;,V;)| <€
for all A C V;, B CV; with |A| > ¢ |V;|,|B| > ¢|Vj].
(3) Moreover, one can assume that all parts are of almost equal size, i.e.
[|Vil = [V;]] < 1 for all 4,5 € [K]. In this case, we say that the partition
V=V U...UVk is an equipartition.

Remark 2.3. Note that any sufficiently large graph has some e-regular partition,
e.g. into parts each of which consists of a single vertex. The crucial point of
the theorem is that the size of the partition is bounded only in terms of e, and
independently of the size of G.

Remark 2.4. Regularity lemma doesn’t say anything about what happens on the
“diagonal” in V2. Namely, given an e-regular partition Vi,...,Vx of V, it is pos-
sible that all of the pairs on the diagonal (V;,V;),1 < i < K are exceptional
simultaneously. Namely, if ¥ is the collection of all bad pairs, we have that
Yapes VillVil < £|V|*. On the other hand, if let’s say (V; : 1 < i < K) is

2
an equipartition, we have Y, . [Vi| 2 < K% <+ |V|?, which can be smaller

than £ [V|* when K is sufficiently large.

Exercise 2.5. A half-graph on n vertices is G = (V, E) with V = [n] = {1,2,...,n
such that £ = {(Lj) € [n]2 11 < j}. Using half-graphs, show that in Theorem

one cannot assume in addition that ¥ = 0.

Next we are going to prove Theorem Assume that the theorem is false. This
means that for some € > 0 we have a sequence of finite graphs G; = (V;, E;), i € N,
such that there is no e-regular partition of V; into at most ¢ parts (in particular
|Vi| = oo by Remark . Let G := [[;en G:/U, with U a non-principal ultrafilter
on N. We will see that regularity follows from basic measure theory applied to the
“limit” of the counting measures on the V;’s.

2.2. Finitely additive measures. Let X be a set, and let B be a Boolean algebra
of subsets of X, i.e. B C P (X) is such that ) € B,X € B and if A, B € B then
AN B e Band —A € B. Note that this also implies AU B € B.
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Definition 2.6. A function p : B — Rxg is a finitely additive measure, or f.a.
measure, if for every A, B € B such that AN B = () we have u(AUB) = u(A) +
p(B).
Remark 2.7. This implies:

(1) For any disjoint A1,..., A, € B, p(A1U...UA,) =p(A1)+...+u(4,).
(2) If A, BEB AC B, then,u(A)Su(B).
(3) u(0) =
()ForanyABeB w(AUB)=p(A)+pn(B)—u(ANB).

Definition 2.8. A finitely additive probability measure, or f.a.p. measure, on B is
f.a. measure on B such that moreover p (X) = 1.

Example 2.9. (1) Let X be a finite set. The counting measure p on P (X)
is defined by p(Y) = ‘ II for all Y C X. Then p is a f.a.p. measure on
P (X).

(2) Let U be an ultrafilter on a set X. It may be naturally identified with a f.a.p.
measure on the Boolean algebra P (X) taking values in {0, 1}. Namely, for
Y C X, we define pgyy (V) =1UY €U, and puyy (V) =0if Y ¢ U. Tt is
easy to check that py, is a f.a.p. measure on P. Conversely, for every f.a.p.
measure £ on P (X) with values in {0,1}, the set {Y C X : p(Y) =1} is
an ultrafilter.

We saw that one can extend ultrafilters using the axiom of choice. The same
applies to general f.a.p. measures.

Fact 2.10. (see e.g. [12]) Let X be a set and B C B’ C P (X) be Boolean algebras.
Let i be a f.a.p. measure on B. Then there is a f.a.p. measure u' on B’ extending
. Moreover, for any S € B’ we can choose p/ with ' (S) =r for any r satisfying

sup{pn(A): AeB,ACS} <r<inf{u(B):Be€B,SCB}.

Another example is given by the limit f.a.p. measure on an ultraproduct of
structures each of which is equipped with a f.a.p. measure.

Definition 2.11. Assume we have a fixed sequence of sets V;, ¢ € N. For each 1,
let B; be a Boolean algebra of subsets of V;. Let U be a non-principal ultrafilter on
N, and let V := [,cy Vi/U.
(1) We call a set A C V internal relatively to the B;’s if A =[]
some A; € B; (ie. [a] € X < {ieN:a(i) € A;} €U).
(2) We say simply that A is internal if it is internal relatively to the Boolean
algebras P (V;), i € N.
(3) Let B be the collection of all subsets of V' internal relatively to the B;’s. It
is a Boolean algebra of subsets of V' (e.g. by Log theorem).

ieN AZ/U for

Exercise 2.12. Recall the definition of ultralimit from Definition Let (X,d)
and (Y, d’) be metric spaces, and assume that f : X — Y is continuous. Then for
any sequence (a;);.y from X and any non-principal ultrafilter ¢/ on N, we have
lima; = li i) = .
ima; =a = lim f(a;) = f ()

Definition 2.13. In the context of Definition [2.11] assume also that y; is an f.a.p.
measure on B;, for all i € N. For any set A € B, say A = [[,cyAi/U, define
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w(A) = limy, p; (A;) (ultralimit exists as p; take values in [0,1]). Then u(X) is a
f.a.p. measure on B.

(Exercise: check that this is well-defined, i.e. doesn’t depend on the choice of
the A;’s as above).

Proof. Note that if a;,b; € [0, 1], then limy, (a; + b;) = limgs a; +1imy, b; (by Exercise
applied to X = [0,1]? and Y = [0, 2]).

Let now A = [[,cyAi/U, B = [];cy Bi/U in B be disjoint. Then there is
some S € U such that A; N B; = @ for all ¢ € S. Then for all i € S, we
have u; (Az U Bz) = Ui (Az) + (Bz) Note that AU B = HiEN (Az U Bq;) /L{,
limgs i (Byi) = p (A) + pu (B), as wanted. O

2.3. Obtaining countable additivity. We would like to apply some basic theory
of integration. Normally it is developed in the context of countably additive mea-
sures, rather than f.a.p. measures. We will in fact use the theory of integration for
f.a.p. measures (see e.g. [15]), but first we point out how countable additivity can
be obtained for free in our setting (the so-called Loeb measure construction).

Definition 2.14. Let X be a set. We say that £ C P (X) is a o-algebra on X if
Pef, Acf = —~Ac& and A;efforallieN —= A=J,yAi€f.

This implies: X € £ and £ is closed under countable intersections. For any
F C P(X), there exists a unique smallest (under inclusion) o-algebra oF on X
with F C o F. We call o F the o-algebra generated by F.

Fact 2.15. (Carathéodory’s extension theorem) Let B be a Boolean algebra on a
set X, and assume that p is a o-additive measure defined on B. Then u extends to
the o-algebra oB generated by B. Furthermore, if p is o-finite (e.g. a probability
measure), then this extension is unique.

Proposition 2.16. Let M be an Xy-saturated structure, and let B be a Boolean
algebra of definable subsets of M™ (with parameters). Let u be an f.a.p. measure
on B. Then it extends in a unique way to a countably additive probability measure
i on the o-algebra oB generated by B.

Proof. In view of the Carathéodory’s theorem, it is enough to check that u is already
o-additive on B. So assume that X € B is a definable set, and assume X = [ |, X;
with X; € B definable. We want to show that p (X) = >, .y ¢ (X;). Assume that
X 2 U,cn, Xiforalln € N. But then every finite subset of { X }JU{—X; : i € N} hasa
non-empty intersection, so by saturation of M we must have that X N[, ~X; # 0
— contradicting the assumption. It follows that X =| |,_, X; for some n € N, and
X; = 0 for i > n. The conclusion follows from the finite additivity of pu. O

Corollary 2.17. Let M;,i € N be L-structures in a countable language L, and let
U be a non-principal ultrafilter on N. Let n € N be fized, and let B; be the Boolean
algebra of all L-definable subsets of M*. Let p; be an f.a.p. measure on B;, and let
u be the ultralimit measure on B — the Boolean algebra of all L-definable subsets

of M™. Then u has a unique extension to a o-additive measure on the o-algebra
oB.

Proof. Combine Proposition [2.16] and X;-saturation of the ultraproduct M. O
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Exercise 2.18. Let V; be a sequence of finite sets, and let V :=[],  Vi/U. Let B
be the Boolean algebra of all internal subsets of V' (See Definition (2)) Let pu;
be the counting measure on P (V;) Show that the ultralimit of the yu;’s extends to
a o-additive measure on oB.

2.4. Integration for charges (signed f.a. measures).

Definition 2.19. Let B be a Boolean algebra on a set V. A fa. charge (or a
signed f.a. measure) p on B is a f.a. bounded function p: B — R.

Hence a f.a. measure is a f.a. charge taking only positive values. The set of all
f.a. charges on B forms a vector space over R.

Definition 2.20. Let By, By be Boolean algebras on the sets U, V', respectively.

(1) Let By x By :={AxB:Ae€By,BeBy} C P{UxV), and let By ®
By C P (U x V) denote the Boolean algebra generated by By x By .
Note: X C By ® By iff X can be written as a finite (disjoint) union of sets
from By x By.

(2) Let puy,uy be f.a. charges on By, By, respectively. Then there is a unique
f.a. charge p on By ® By with p(A x B) = uy (A) py (B) for all A €
By, B € By (uniqueness follows from finite additivity). We will denote this
1 by py X py, the product measure on By ® By .

Note: if both uy,py are fa. (f.a.p.) measures then p is fa. (f.a.p.)
measure.

Definition 2.21. For an f.a. charge p, define ™, =, |u| : B — R by
P (X) =sup{p(Y): Y CX.Y € B},
pm (X)=—inf{u(Y): Y C XY € B},
|1l (X) = p* (X) + p7 (X)
for all X € B.

Fact 2.22. [I5, Theorems 2.2.1 and 2.2.2]
(1) All of u*,pu=, || are f.a. measures on B, and p = pt — p~ and |p| =
pt
(2) Let p be an f.a. charge on B. Then for every X € B we have
|l (X) =sup Y |u(Y)],
YeQ
where sup is taken over all finite partitions Q of X with Q C B.

Definition 2.23. For a f.a. charge pon B C P (V), define ||u| = |u| (V).

Exercise 2.24. [I5, Theorems 2.2.1 and 2.2.2] ||-|| is a norm on the vector space
of f.a. charges on B.

We will use basic theory of integration relatively to f.a. charges.
Fix a set V and a Boolean algebra B C P (V). For a set X C V, 1x is the
indicator function, i.e. 1x (a) =1ifa € X and 1x (a) =01if a ¢ X.

Definition 2.25. A function f : V — R is B-simple (or just simple if there is no

ambiguity) if
f= Z rila,
i=1
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for some r1,...,7, € Rand Ay,..., A, € B.

One may always choose disjoint Aq,..., A, as above. The set of all B-simple
functions forms an R-algebra.

Definition 2.26. For a f.a. charge p on B and a simple function f =Y | r;14,

we define .
/Qfdu = rip(Ai).
i=1

(Exercise: this definition doesn’t depend on the specific representation of f as a
simple function.)
If ACV, A€ B, then we also define

/Afdﬂ:/vl,qfdu:;mu(/lﬂ)(i).

Note: for any A € B, u(A) = [i, Ladp.

Definition 2.27. Let f be a B-simple function. Then the function B — R defined
by A — fA fdp is a f.a. charge on B. We will denote it by fdp.

We will need a version of the Radon-Nikodym theorem for f.a. measures. As
before, B is a Boolean algebra on V.

Definition 2.28. Let u,v be f.a. charges on B. We say that v is absolutely
continuous with respect to p, and write v < pu if for every € > 0 there is § > 0 such
that |u] (X) < § implies |v| (X) < € for every X € B.

Theorem 2.29. (Radon-Nikodym for f.a. measures, see [3], or [15, Theorem 6.3.4])
Let p,v be f.a. charges on B with v < p. Then for every € > 0 there is a simple
function fo with ||v — fedu| < e.

For f.a. charges p,v on B, write u < v if 4 (X) < v (X) for all X € B.

Corollary 2.30. Let u be a f.a.p. measure on B and v a f.a. measure on B with
v < u. Then for every e there is a simple function f. such that ||v — fodpl|| < e.

Remark 2.31. Assuming o-additivity, one finds a oB-measurable function f such
that v (A) = [, fdp for all A € 0B (and this function f can be approximated by
simple functions). Moreover, such function f is unique (up to differences on sets of
measure zero) and is called the Radon-Nikodym derivative.

2.5. Measure-theoretic regularity. We are ready to prove a measure-theoretic
(bipartite) form of regularity.

Theorem 2.32. Let By,By be Boolean algebras on U,V , resp. Let py,py be
f-a.p. measures on By, By, resp. Let B be an arbitrary Boolean algebra on U x V
extending By ® By, and p a f.a.p. measure on B extending py X py .
Assume that E € B. Then for any € > 0 there are:

(1) a partition U = Uy U ... U U, with U; € By,

(2) a partition V=V U...UV, with V; € By,

(3) real numbers 6;; € [0,1], for 1 <i<m,1 <j<m,

(4) an exceptional set of pairs ¥ C [n] X [m)]
such that
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(1) Z(i,j)ez po (Ui) pv (Vi) <e,
(2) for every (i,j) ¢ ¥, for any A € By, B € By with A C U;, B C V; we have

[ (EN (A X B)) =i (A) py (B)| < epw (Ui) pv (V) -

Proof. Let Byy := By ® By and pyy := py X py — a f.a.p. measure on Byy .
Let vg : Byy — [0,1] be defined as vg (X) := pu(ENX) for all X € Byy. Then
vg is a f.a. measure on Xyy with vg < pyy.
By Radon—Nikodym (Corollary there is a Byy-simple function f such that
lve — fdpov| < €.
As f is simple, there are some partitions U = Ui U. ..U, with U; € By and V =
Viu...uV, with V; € By, and §;; € [0,1] such that f = Z(M)e[m]x[n] 0i1u, xv; -
Let ¥ be the set of all (4, j) € [m] x [n] such that

lve — fdpuv| (Us x Vj) > eppyv (Ui x V).

Since |vg — fduuyv| is a f.a. measure on Byy,

&> v — fdpuv| (U x V)= > eppy (Ui x Vi) =e > v (U; x V;).
(i,j)€x (i,J)€S

Hence -, - cx puv (Ui x Vj) < e, and conclusion (1) is satisfied.
Let’s show (2). Assume (7,7) ¢ ¥, hence

lve — fduuv| (Ui x Vi) <epu (Us) py (V5) .
Let A € By, B € By with A C U;, B C V; be arbitrary. Then:
[ (EN (A X B)) = dijpuv (Ax B)| = |vg (A x B) = fduyy (A x B)| < |vp — fduuv| (A x B).

Since |vg — fduyv|isaf.a. measure and AxB C U;xV;, we have |[vg — fduyyv| (A x B) <
lve — fduyv| (U x V;) — as wanted. 0

Exercise 2.33. Give a variant of this proof using o-additive measures and a stan-
dard version of the Radon—Nikodym theorem. (Hint: define a first-order structure
M with two sort U,V in which all elements of By, By and B are named by a
predicate. Every structure has an Nj-saturated elementary extension — without
loss of generality can work in it).

Corollary 2.34. Szemerédi’s regularity lemma for finite graphs, i.e. Theorem|2.1
holds.

Proof. Assume it doesn’t hold. This means that for some fixed ¢ > 0 we have
a sequence of finite graphs G; = (V;, E;), i € N, such that there is no e-regular
partition of V; into at most ¢ parts (in particular |V;| — oo by Remark . Let
G :=[I;en 9i/U, with U a non-principal ultrafilter on N, write G = (V, E).

Let B; = P (V;), and let B be the Boolean algebra of all internal subsets of V.

Let B; = P (V?), and let B’ be the Boolean algebra of all internal subsets of V2.

Finally, let p; be the counting measure on V;, let p} be the counting measure on
V2. Then p = limy y; is an f.a.p. measure on B, p/ = limy, y} is an f.a.p. measure
on B, B' D B® B, and ' is extending u X pu. Moreover, E € B'.

Applying Theorem we obtain an §-regular (relatively to ) finite partition
of V into internal subsets. But then on a U-large set of indices ¢ € N this gives an
e-regular partition of V; into the same fixed number of pieces — contradicting the
choice of the sequence G;. O
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Exercise 2.35. Using the same ultraproduct argument, demonstrate that in The-
orem [2:32] a bound on the size of the partition n,m can be chosen depending only
on ¢ (so uniformly over all Boolean algebras and all measures).

2.6. References. *** TBA. The use of the finitely additive Radon-Nikodym arose
from my work with Sergei Starchenko.

3. HYPERGRAPH REMOVAL

3.1. Removal lemmas. We first consider the more standard triangle removal for
graphs.

Fact 3.1. (Triangle removal lemma, Ruzsa and Szemerédi) For every € > 0 there
is 0 > 0 satisfying the following. If G is a finite graph on n vertices with at most
on? triangles, then it may be made triangle-free by removing at most en? edges.

Proof. We will deduce it from the regularity lemma (Theorem .
Let G = (V,E) with [V| =n. Let V.=V U... UV be an §-regular partition
of the vertices of G, where K = K (¢g), i.e.

* X pes VillV] < i,
o |dp(A,B) —dg (Vi, V)| < § forall AC V;, B CV; with |A| > £ [V{],|B| >
$ 1V}l (see Exercise .

We remove an edge zy from G if:

(1) (z,y) € Vi x Vj, where (V;,V}) is not an -regular pair,
(2) (z,y) € Vi x V}, where dg (V;,V;) < 5,
(3) = €Vj, where |Vi| < j%n.
The number of the edges removed in (1) is at most > ; s [Vil [Vj] < £n?, in
(2) — clearly at most 5n?, and (3) — at most Kn;%n = Sn?. Overall, we have
removed at most en? edges.

Suppose that some triangle remains in the graph, say zyz, where x € V;,y € V;
and z € Vi. Then the pairs (V;,V}),(V}, Vi) and (Vi,V;) are all -regular with
density at least 5, and |V;|, [Vj|, [Vi| > 1%n.

Lemma. Let X,Y,Z be subsets of V such that (X,Y),(Y,Z2),(Z,X) are e-
regular with d(X,Y) = «,d (Y, Z) = 8,d(Z, X) = ~y. Then, provided «, 8,7 > 2e,
the number of triangles zyz with x € X,y € Y,z € Z is at least

(1=2¢)(a—e)(B—¢) (v—o) [X|[Y]]Z].

Proof of the lemma. For every z € X, let dy () and dz () be the number
of neighbors of x in Y and Z, resp.

Let X' :={zr € X :dy (z) < (a —¢)|Y]}. Then |X'| <e|X| (if not then X’ C X
is of size at least € | X| and such that dg (X', Y) < a«—e — contradicting regularity).

Let X" :={x:dz (x) < (y —¢)|Z|}. Similarly, | X"| < e|X].

If dy () > (e —¢) Y| and dz (x) > (v —¢)|Z|, using that the pair (Y, Z) is
e-regular with density §, the number of edges between N (z) NY and N (z) N Z
is at least (o —¢) (B —¢) (v — &) [Y||Z] (hence there are at least as many triangles
containing ).

Summing over all z € X \ (X’ U X") gives the result.
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Applying the lemma to our situation, the number of triangles in G is at least

(1-%) (%)3 (&)Sng. Taking 6 = (1— %) (%)3 (&)3 > 0 gives a contradiction.
O

More recently, this was generalized to hypergraphs.

Definition 3.2. A k-uniform hypergraph G on a set of vertices V is any subset
G < (o) of (3):

Theorem 3.3. (Hypergraph removal lemma, [Gowers] and [Nagle, Rédl, Schacht
and Skokan]) For each k € N, € > 0 and a finite k-uniform hypergraph (W, F) there
is some § > 0 such that: whenever (V, E) is a k-uniform hypergraph containing at
most 0 |V||W‘ copies of (W, F), it is possible to remove at most & |V|k edges from it
to obtain a hypergraph with no copies of (W, F) at all.

Again, we will convert it into a more general measure-theoretic statement.

3.2. Measure-theoretic hypergraph removal. We introduce some notation.
Fix some sets Vi,...,V,. For every I C [n], let Vi = [],; Vi. We will write

ar,br,cy, etc. for elements in Vy. Givenay € Vyand J C I, we will write ay € V for

the subtuple of a; given by restricting to the coordinates in J. For any J C I C [n],

E CVyand b € Vy, we write Ep := {a €Vn:(a,b) € E} S Vi
Definition 3.4. For every I C [n], let B; be a Boolean algebra of subsets of V7,
such that:

(1) for any I, [n] with I N J =0, we have By ® By C By,
(2) for any I, [n] with ITNJ =0,b€ V;and E € By, the fiber E, =
{a € V;: (a,b) € E} is in B;.
Then we call (Br : I C [n]) a compatible system of b.a.’s on (V; : 4 € [n]).

JC
J <

Example 3.5. (1) Fix a first-order structure M. Fix n € N, and for each
I C [n]let By be the b.a. of all definable subsets of M!/I. Then (B : I C [n])
is a compatible system of b.a.’son V3 =... =V, = M.
(2) Let W = [],cy Wi/U, fix n and for I C [n] let By be the b.a. of all internal
subsets of W, Then (Br: 1 C [n]) is a compatible system of b.a.’s on
Vi=...=V,=W.

Definition 3.6. (in a compatible system of b.a.’s)

(1) For J C I C [n], let By, be the b.a. on V; generated by the sets of the
form {ay € Vi 1 ay € E} for all E € Bj.

(2) If J € P(I), let By, 7 be the Boolean algebra generated by | ;c s Br.s-
When & < |I|7 let B[Jc = BI,{J§1:|J|:I€}'

(3) We write < I for the set of all proper subsets of I, so e.g. Br<r =
Br (icricr-

(4) Given Z,J Cn|, let TN T :={K:3[€Z,Je T st. KCInNJ}.

(5) We add a superscript B to denote the o-algebra generated by the b.a. B.

Definition 3.7. Let (B; : I C [n]) be a compatible system of b.a.’s on (V; : i € [n]).
For each I C [n], let ur be a probability measure on B7. Assume moreover that
for any J C I C [n] we have:

(1) pr extends the product measure f; X pp\ 7,
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(2) For each Bf-measurable function f : Vi — R, the function b — fVI\J f (JUI\J, b) dpp g

from V; to R is Bj-measurable,
(3) (Fubini) For each Bf-measurable function f : V; — R and J C I, we have

[ s = /V ] ( /V i ansn) duf\J> djus (b).

Then we call (ur, Br : I C [n]) a compatible system of measures on (V; : i € [n]).

Remark 3.8. (1) Note that applying (3) to I\ J instead of J, the order of
integration in (3) doesn’t matter.
(2) Inparticular we have: for any E € B7, we have uy (E) = fv, prg (Bz)dpy (z) =

Ty, 11 (By) dupyg (y).

Problem 3.9. Can we recover full (2) and (3) from assuming it only for the indi-
cator functions? l.e., assuming

e For each E' € By and b € Vj, the function b +— up () from Vy to R is
B j-measurable,

e Forany £ € By, we have iy (E) = fVJ prg (Bz)dpg (z) = fv,\J wr (Ey)dup g (y)-

Example 3.10. (1) Let V4,...,V, be finite sets, fix n. For each I C [n], let

Br := P (V7) and let p; be the counting measure on P (V7) (ie. ur(X) =

[k for all X C Vi), Note that B; = Bf. Then (ur,B;:1C [n]) is a
compatible system of measures.

(2) In the context of Example ﬁ(Q), let py = limy, MLI‘
ing measure on V;* for all k € N.

Then (uy, By : I C [n]) is a compatible system of measures (Exercise! Note

that it is obviously satisfied by the counting measures on finite sets, and

verify that it transfers to the ultralimit).

, where ¥ is the count-

Remark 3.11. If E € B, ; then pupy, (E) = ps (71 (E)), where my (E) C Vi is the
projection of E onto V;. Indeed, as E € Bf;] » B = 71 (E) x Vi1, hence by
compatibility up (E) = pur (71 (E)) ppaps (Viapa) = wr (71 (E)).

Theorem 3.12. (Hypergraph removal lemma, measure-theoretic version)

Let (ur,Br : I C [n]) be a compatible system of measures on (V; :i € [n]). Let T C

(") and Ay € By g for all T € T.
Suppose there is 6 > 0 such that for any By € B,y 1 (M) with pp,) (A7 \ Br) <0

Jorall 1 € Z, N;ez Br # 0. Then ppy) (Nyez Ar) > 0.
Proof. By induction on k.

Base step k& = 1. If the assumption holds, then necessarily p,; (A7) > 0 for all
I € T (assume that pp,) (Az,) = 0 for some Iy € Z; taking By, = () and By = A; for
all T € Z\ {Iy}, we would have pup,) (Ar \ Br) =0 forall T € Z, yet (;c; Br =0 —
so no ¢ > 0 as required could be chosen). Hence

Hn) <m AI> = H Hin) (A[) > 0.

1€ IeT
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Induction step. So we assume that k£ > 1 and that whenever By € Bj,),; with
Hin) (AI\B]) <dforall I e T, then ﬂIEIBI 7é 0.

We prove it in a series of claims.

We saw in the regularity lemma, that the indicator function of a graph can be
well-approximated by a simple function on the product Boolean algebra. Similarly,
the indicator function of a hypergraph can be “approximated” by a simple function
on the Boolean algebra generated by all of the smaller product Boolean algebras
— as the following two claims will show.

Fact. Let (2,8, 1) be a probability space, and let A be a o-subalgebra of B.
Given a B-measurable function f : @ — R>q, there is a unique (up to differences
on sets of measure zero) A-measurable function g : @ — R>o with the property
that [, fdu = [y gdu for every X € A. Such a g is denoted E (f|.A), the condi-
tional expectation of f relatively to A. (This is a corollary of the Radon-Nikodym
theorem).

Claim 1. For any Iy € Z,
1, = /
/m ©Un
Proof.

Let f: V], — R be the function defined by
f:: (]‘AIO _E(]‘AIO‘BEL],<IO)) H ]‘AI'
I€T\{Iv}

Note that f is B},-measurable. By Definition 1' the function a — fVI [ (xg,,a)dur,
0
from Vi1, to R is Bj,)\ ;,-measurable and

/

Hence it is sufficient to show that [;, f(xr,,a)dpuz, =0 for all @ € Vi g,
0

E (1AIO |Bgl]7<[0) djifn.

IeI\{IO}AI IeI\{IO}AI

f(ap) dppy = /

Vin\1o

( f (mlm CL) dﬂ’[o) du[n]\Io (a) .
Vi

nl

Fix some a € V},,;\1,- We want to exploit the fact that the sets involved don’t
depend on the coordinates outside of Iy. For each I € Zy we have:
o A; = A} X Vi1 for some A} € BY,
b 1A10 (ajfo?a’) = 1A,10 (xlo)a
e For any I € T\ {Iv}, as |Io| = |I| =k, we have INIy C Ip,I. So
1a, (15,0) = 1o, (T1n1y, 01\1,) — it is BY, j ~;-measurable by compatibil-

1ty.
e Hence [[;cq (7,3 14, (215, @) i By, <f,-measurable, and

C':=SceVy: H 14, (x1y,a) >0p € Bf 1.
IeT\{Io}

o Let 1/ (zy,) :=E (1,4/10 (x1,) |B?0,<Io>‘ We claim that h (z(,)) = b/ (z,)

gives E (1A10 (m[n]) |Bfnl,<[0).
To see this, take any D € Bfn],do' Wam.a. D = D" x Vg, for some
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D" € By, _,- Then, using compatibility,

/ h () dptgn) = / ( / h(ﬂflmx[n]\fo)dﬂlo> g, (Tng) =
D Vin\ 1o !

/ (/ W (xr,) d/no) A1, = / (/ Lay, (xfo)duf()) A1, =
Vin\1g \/ D’ Vin\Io !

= / ( / Lag, (T10: 1) d/uo) dptf\ 1, = / Las, () dpgn-
Vini\1o ! D

Hence, E (1La, 1B, <1, ) (#1,) = E (14, 1B7, -, ) (21.0).
Combining these observations we have

f(z1y,a)dur, = /C (lA'ro (xr,) —E (1Ago |BZ,,<10> (1710)) dur, = 0.

VIO

Claim 2. For any I € Z, there is some A7 € BEL]7<IO such that:

o If By € Byy,r for all I € Z satisfy up,) (A7 \ Br) < d for each I # Iy and
pm) (A%, \ Br,) <6, then ;o7 Br # 0,
o If H[n] (A/IO N ﬂIGI\{Io} A[) > 0 then H[n] (mIeI A]) > 0.
Proof. Define A7 := {x[n] €V E (1A,0|B" ) (zn)) > O}. Note that A} €

[’n],<Io
B, (as E (1,4,0 |B? ) is BY

<l <l -measurable).

,<Io
If pup) (A/IO n mlez\{jo} AI) > 0 then

A

and using Claim 1 this implies

pal (|1 Ar) = / Lay, dptin) = /
(ﬂ ) N A N

Iez I1€T\{Ig} 1

E (1,410 |Bgl},<lo) du[n] > 0,

Iez\{Ip} Ag

E (Las, 1Bf.<1, ) dhign) > 0.

IeZ\{Ip} Ar

Suppose now that for each I, By € By, r with ) (Ar \ Br) < d for I € T\ {Io}
and p, (A7, \ Br,) < 0. We also have

fin (Ar \ A7) = / L,y dpifn) =
Vi \AY,

/ E (]‘AIO ‘B[n]7<lo) d.u[n] =0,
Vin\AL,
hence fi,) (Az, \ Br,) < 9 as well, therefore (., Br # 0.

Applying Claim 2 to each I € Z, we may assume for the rest of the proof that
Ar € Bﬁl] o forall I €Z.

Fix some finite Boolean algebra B C By} ,—1 (hence B” = B) so that for every

I €I, |14, - E(1A1|B)”L2(u[n]) < % (such a B exists because there are
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finitely many I and each Aj is Bf’n | x_1-measurable, and B"] w_1 is generated by

Bip)k—1). For each I € T, set A := {a; :E(14,|B9) (ar) > II\+1} €B.

Claim 3. For each I € Z, jup,) (A7 \ 43) < 3.
Proof. Note that

. 7] |
B : — > 1 — =
A\ A = {a €V (L, - B B) @) 2 1= P =

< {aevi: a, - BB @ > 7}

Recall:
Fact. (Markov’s inequality) Let (€2, B, ) be a probability space. Given a B-
measurable function f: 2 = R>¢ and o > 0, we have

w(facQ: f>ay < o)

Applying Markov’s inequality to f := (14, — E (1,4, 1B))?, we get that pn) (Ar \ A7)
is at most

0
(2140 [ (Lay ~E (L4, B) ity = (2] + 1) |14, ~ E (L, B) s, ) < 5.
In]
1 (N A3
Claim 4. i) (Nyez A1) = > HnArez 1) Kmﬁf I).
Proof. For each In€Z,as Az N ﬂIGI\{Io} A7} € B, we have
poy | (A5 \Ar)n () A7 | = / (1= 14,,) dppm =
T€T\{Io} ArsMNrez\(1o) A7

/ B 8) duy = [ (1B (14, B) ] Ladu

A Niex (193 A7 ATy ITeT\{Io}

H 1asdpn
a7 | +1 /Vm ier

1 *
P (ﬂAI>'
IeT

But then

Kin) (ﬂ AP\ AI) <D | (A NAR) N () A

IeT IeT IoeT I1eT\{Io}

< A7
‘ ||I|+1M[n]<ﬂ I)a

Iel

S0 [ (ﬂIEI AI) Z p (nleI A?)_l‘ (ﬂleI AT\ Nyez AI) 2 (1 - 7] mﬁ) Hn] (mIGI A?) 2
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e Each A7 € B can be written in the form A} = J,., A7 for some 7 € N,
where A%, = mJe( I )A’;iJ and A} ; ; € By, such that if i # 4’ then
) wl1) S i
Ar N AT = 0.

e Then
Nai= U N N Ao

Te1 i€l ez(trr] T€T Je(k£1)

e For each i € [[;o7 [1,71], let Dy := ;1 m‘]e(kil) A?,i“].
e BEach A7, ; € Bj, s, so we may regroup the components and write D; =

nJe(k[ﬁ]l) D; ; where Dy ; =\ crez ALiy,g € Bl
e Suppose, for a contradiction, that up, ((; A7) = 0.
Then g (D7) = i) (ﬂJe( ) D;J) =0forallie [z [1,71]
e By the inductive hypothesis applied to each of the D-, icie [z [1,71],

[n]
k—1

for each real v > 0, there are then some By ; € By, s such that [, (D;J \ B; J) <
~ and ﬂJE(k[f]l) B;, =0.

In particular, this holds with ~ := J

5 .
2(k—1) ez rr maxrezrr

e Foreach I € Z,¢ <y, J C I define

Bris=Arig0 ﬂ B?,J U U _‘A?,ip,J € By, -
iir=i I'2J,1'#1
Claim 5. jin) (A7, 5\ B y) < 3 maer s

Proof. If z € A%, ;\ B}, ;, then for some 7 € [1;ez [1,71] with i; =4 we have
x ¢ B;’J U U _|A?/,’L-I/,J'
I'DJI'#1
This means = ¢ B; ; and v € (5,47, , ;= D; ;. So
0

2(]651) maxsrez s ’

po (A1a s \Biis) S Y. i (Dry\ Byy) <
?GHIEI[LTI]

Claim 6. Let B} := Uigm nJe(kil) Bi.j€ Bipn),<r- Then ppy, (Ar\ By) <.
Proof. As i, (Ar\ Aj) < 2 by Claim 3, it suffices to show that p, (45 \ B}) <
g. We have

Hin) (A7 \ Bf) = Lty | AT \ U m B;,i,]

i<ry Je(kil)

=m | U M 4N U N Bia

isrrge(, ) isrrge(, )

< W) U <ﬂ A7ia\ ﬂ B?,i,J)
J J

iSTI
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< Z Hin] <ﬂ AT\ ﬂ B;,i,J)
J J

iSTI

<D (A7 \ Big)

igm J

<r< K ) 0 <é
= k—1 Q(kﬁl)maX[ezT[ -2

using Claim 5.

Hence the sets B} satisfy the assumption for all I € Z by Claim 6, therefore
Niez Bi # 0.

Claim 7. mjgz B}k g U{GHIGZ[LTI] ﬂJe(k[:L]l
Proof. Suppose x € ;7 Bf € ez Uicy, nJe(kil) Bj,; ;- Then for each I €

) By

7, there is some 17 < r; such that z € mJe( ) Bj ;, 5, and take By = (i : I €1).
k—1 U

Since By ;, ; € A}, j.foreach I €T and J C I,z € A7, ;.
For any J, let I O J. Then

€Bi, =A,u0 () [Bsv U Al
i =i IO I#I
In particular, z € B; ;UUpsg 21 AL, 0
Since = € A?,z,,,J for each I' D J, necessarily = € B; ;. This holds for any J, so
X € mJ BZ,J'

Since ();cz Bf # 0, there is some i€ [I;ez[1,71] such that (N, By, # 0.
This is a contradiction to our assumption, hence pp, ((; A7) > 0, and therefore,
1) (Nyez Ar) = % > 0 by Claim 4. O
Corollary 3.13. (Hypergraph removal, partitioned version of Theorem ,

Fix0<k<n,e>0andZC ([Z]) a k-uniform hypergraph on [n]. Then there
is & > 0 such that the following holds.

Let (V; i € [n]) be finite non-empty sets. For each I € T, let A; be a subset of
[I;c; Vi Suppose that

(@i)iepm € H Vii(zi)jer €Ar forallI €L ;| <0 H Vil
i€[n] 1€[n]
(i.e. the n-partite hypergraph G = ((Vi)ie[n} , (AI)IEI) contains at most 6 [ [;¢(, Vil
copies of - not induced, just as a subgraph).

Then for each I € T there exists By C [[,c; Vi with |Ar\ Br| < e[[;c; Vil such
that

(@)icpm € [ Vit (®i)ses € Br forall 1 €T 3 =10,

i€[n]
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(i.e. the n-partite hypergraph G' = ((Vi)ie[n] , (BI)I€I> contains no copies of T

whatsoever).

Proof. Assume not, and let k, Z C ([Z}) and £ > 0 be a counterexample. Since there
is no § > 0 as in the statement of the theorem, for each m € N we may choose a

k-uniform hypergraph G,,, = ((Vm)ie[n] , (AT)IGI) such that G,,, contains at most

3
L Hie[n] |[V™| copies of Z, but there are no subsets By, I € T as required.

m
Then clearly |V™| — oo as m — oo. Let U be a non-principal ultrafilter on N,

and let G :=[], oy Gm/U, G = ((Vi)z‘e[n] ) (AI)IGI)‘ For each I C [n], let u* be
the normalized counting measure on V", and let p; = limy, u* — a f.a.p. measure
on the internal subsets of V; = Hie[n] V.

Then (pr : I C [n]) is a compatible system of measures on (V;: i € [n]) (Exer-
cise . Note that by assumption puf (Nrez A7) < L for all m € N, hence
ping (Nrez AI) = 0. By Theorem there are some internal sets By, I € Z,
such that jup,) (A7 \ Br) < § and ();c7 Br = 0. Say By =[],y Bf*/U. Then for
some S € U and all m € S, we must have up, (A7 \ Bf") <€ and (.7 BY" = 0—
a contradiction to the choice of the G,,’s. [l

Exercise 3.14. Deduce Theorem from Corollary (taking V; =V for all 4
and constructing the corresponding partite hypergraph).

3.3. Szemerédi’s theorem on arithmetic progressions.

Theorem 3.15. (Szemerédi’s theorem) For any € > 0 and k € N, there is some
ng € N such that for any n > ng and A C [1,n] with |A| > en, there exists an a
and d # 0 such that a,a +d,a+2d,...,a+ (k—1)d € A.

Proof. Let § > 0 be as given by Theorem for &’ := Wfk—” > 0,k and W the
complete k-uniform hypergraph on k + 1 vertices. Let ng be large enough so that
onftt > nk.

Let A C [1,n] be given, with n > ng. We define a k-uniform (k 4 1)-partite
hypergraph as follows. Let V; := [1,n] for each i = 1,...,k and let Vipiq :=
[1, kzn] CN. Given x; € V; foralli =1,...,k+ 1, we define:

o (21,...,21) is an edge iff 37,y 4y iz; € A,
o forany 1 <i <k, (x1,...,2i-1,%it1,---,Tk+1) 1S an edge iﬁZje[l,k]\{i} jxi+

i (e~ Se g ) € A
Suppose (21,...,Tk4+1) is a copy of the complete k-uniform hypergraph on k + 1
vertices with zx11 # Zie[l’k] z;. Then let a = Zie[l’k] iz; and d = wpq —
Zie[l’k] x; # 0. Then we have a € A, and for each i < k we have

a—l—id: Z j$J+Z Th+1 — Z Zj = Z ]l‘j—Fl Th+1 — Z Zj EA,

JE[LK] JE[LkR] JELEN{i} JelLEN\{i}
as wanted.
On the other hand, for any a € A and any sequence (z1,...,x;) with a =
Eie[l’k} ix;, the sequence (ml, .. '7xk’2i€[1,k] ;CZ) is also a copy of the complete

k-uniform hypergraph on k + 1 vertices: clearly (x1,...,2) is an edge, and for
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any 1 < ¢ < k we have (l‘l,...,xi_l,mi_l,_l,...,xk,zie[l’k] xl) is an edge as

D etk {iy I+ (Zie[l,k] Ti = D e[\ {i} xj) =D jepngiy JTi T = D e g 10 =
a € A. There are at least $n choices for a € A with a > §n; and for any a > §n and
any choice of z; € [1, ﬁn} fori=1,...,k—1 we have Zie[l . iz < Zie[l K] kx; <
k?55n < §n, so there is some x; € [1,n] satisfying Yiepk iz = a. Hence the
number of such sequences is at least Sn (ﬁn)kil = M%nk > ¢/nF. Tt is not
possible to remove all such sequences by removing < &'n* edges. Hence the hyper-
graph removal (Corollary |3.13)) implies that there must be > én**! many copies
of the complete k-uniform hypergraph on k + 1 vertices. But there are at most n*
sequences of the form (z1,..., 25, >, xl> and 0nFt! > nF by assumption on n,

so the remaining copies must correspond to arithmetic progressions. [

3.4. References. The proof of Theorem presented here follows [19, Section
6], with some clarifications, which in turn is based on the ideas in Tao [17, [I8] and
others. The deduction of Szemerédi’s theorem from hypergraph removal is due to
Frankl and Rodl [5], we follow the presentation in [6].

4. REGULARITY LEMMA FOR HYPERGRAPHS OF FINITE VC-DIMENSION

4.1. Bounds in the regularity lemma. Recall the graph regularity lemma (The-
orem in the bipartite version.

Theorem. Lete > 0 be arbitrary. Then there is some K = K (¢) € N such that for
every bipartite finite graph G = (V,W, E) with |V|,|W| > K there are partitions
V=WVu---uV, and W = Wy U...UW,, real numbers 6;;,1,j € [n], and an
exceptional set of pairs ¥ C [n] X [n] such that:

(1) (Bounded size of the partition) n < K,

(2) (Few exceptional pairs) 3, »cx [Vil[W;| < elV[|W],

(3) (e-regularity) for each (i,7) € [n] X [n] \ ¥ we have

[|E(A, B)| = 655 |Al|B]| < e[ Vi[|W]

for all A CV;,, B C W;. We call a pair of sets (V;, W) with (i,j) €
[K] x [K]\ ¥ an e-regular pair.

Remark 4.1. (1) Exceptional pairs are unavoidable (for large n, let V =W =
[n] and let E C V x W be defined by E = {(4,J) : ¢, € [n],i < j} — there
is no way to cover the diagonal by a bounded number of regular pairs).

(2) The densities d; ; € [0,1] could be arbitrary, e.g. we cannot hope to have
d;; € {0,1} in general (e.g. for large n, take a graph with edges distributed
uniformly at random with probability %)

(3) The size of the partition is unavoidably huge!

Fact 4.2. (Gowers [1,13]) K (g) is at least an exponential tower of 2’s of

height O (%)c for some ¢ = 1—16
Fact 4.3. (Fox, Lovds [4]) K () is at least an exponential tower of height

0] (%)C with ¢ = 2, and this bound is tight.

The graphs witnessing these are constructed using probabilistic methods. Per-
haps one can do better for graphs defined “geometrically” or “algebraically”? We
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discuss improved regularity lemmas for some restricted families of graphs. It turns
out that these conditions can be characterized by some model-theoretic notions of
“tameness”.

4.2. VC-dimension. For more details and proofs of the facts in this section, see
2].

Let X be a set (finite or infinite), and let F be a family of subsets of X. A pair
(X, F) is called a set system.

Definition 4.4. (1) Given A C X, we say that the family F shatters A if for

every A’ C A, there is a set S € F such that SNA=A".

(2) The family F has VC-dimension at most n (written as VC(F) < n), if
there is no A C X of cardinality n+ 1 such that F shatters A. We say that
F is of VC-dimension n if it is of VC-dimension at most n and shatters
some subset of size n.

(3) If for every n € N we can find a subset of X of cardinality n shattered
by F, then we say that F has infinite VC-dimension (VC (F) = oo). If
VC (F) is finite, we say that F is a VC-family. Note that if 7' C F then
VC(F') < VC(F).

Example 4.5. (1) Let X be an infinite set and F := P (X). Then clearly
VC (F) = oo. But for F = (¥), VC(F) = k.

(2) Let X = R and let F be the family of all unbounded intervals. Then F

has VC-dimension 2. Clearly any two-element set can be shattered by F.

However, if we take any a < b < ¢, then {a, b, c} cannot be shattered by F.

Exercise 4.6. (1) Let X = R?, and let F be the set of all half-spaces. Show
that VC (F) = 3.
(2) Let X = R? and let F be the set of all convex polygons. Show that
VC (F) = .

Definition 4.7. We define the shatter function 7 : N — N associated to the
family F as follows. For a set A C X welet FNA:={SNA:S¢€F} Then we
define 77 (n) :=max {|FNA|: A C X, |A| =n}.

Note that 77 (n) < 27, and that VC(F) <n <= wz(m) < 2™ for all m > n.
The following fundamental lemma states that either 7wz (n) = 2" for all n € N, or
7 (n) has polynomial growth.

Lemma 4.8. (Sauer-Shelah lemma) Let (X, F) be a set system of VC-dimension
at most k. Then, for alln >k, we have 7z (n) < Z?:o (?)
In particular, 7z (n) = O (nk)

Remark 4.9. (Boolean operations preserve finite VC-dimension) Let F7, F2 be two
families of subsets of X with VC(F;) = d; < co. Show that all of the following
families have finite VC-dimension:
(1) F = ]'-1 Ufz,
(2) Fn = {Sl NnSy:S; € Fii = 1,2} and VC(Fﬂ) <d;+ds +1,
(3) Fu = {Sl UsSsy:S; e Fii= 172}7]:10 = {X\Sl : 51 € fl}andVC(fU) <
di+ds +1,VC (]:f) =dy,
(4) Fir x Fa:={S1 x S9: 51 € F1,52 € Fo} — a family of subsets of X x X.
(5) Besides, if X’ is an infinite set and f : X’ — X is a map, let f=1 (Fy) :=
{fil (S) :Se .7:1} Then VC (f71 (.Fl)) <VC (.Fl)
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Recall: by a partitioned formula ¢ (Z, §) we mean a formula with its free variables

partitioned into two groups Z (object variables) and § (parameter variables). Given
a partitioned formula ¢ (Z,7) and b € MY, we let ¢ (M'i‘,i)) be the set of all
a € M such that M = ¢ (C_I,E). Sets of this form are called definable (or ¢-
definable, in this case). We consider the family Fyz 5 of subsets of M7l defined
by Fyzg = {6 (MIT,b) 1 be Mo}
Theorem 4.10. (Shelah) Let M be a first-order structure. Assume that for ev-
ery partitioned formula ¢ (z,y) with x a singleton, the family Fy has finite VC
dimension. Then for any ¢ (Z,7) € L, the corresponding family Fy has finite VC
dimension.

The proof uses Ramsey’s theorem, and gives bounds that are quite far from
optimal.

In model theory, a partitioned formula ¢ (z,7) is called NIP (No Independence
Property) if the family F, has finite VC-dimension. A structure M is NIP if all
definable families in it are NIP. Such structures were defined by Shelah around the
same time as Vapnik and Chervonenkis have defined their dimension for entirely
different purposes, and are currently being actively studied in model theory (see
[16] for a survey).

Example 4.11. (Semialgebraic sets of bounded complexity) Recall that a set X C
R™ is semialgebraic if it is given by a Boolean combination of polynomial equalities
and inequalities.

We say that the description complexity of a semialgebraic set X C R? is bounded
by t € Nif d <t and X can be defined as a Boolean combination of at most ¢
polynomial equalities and inequalities, such that all of the polynomials involved
have degree at most ¢t. For example, consider the family of all spheres in R™, or all
cubes in R", etc.

We claim that for any ¢, the family F; of all semialgebraic sets of complexity
< t has finite VC-dimension. To see this, consider the field of real numbers as a
first-order structure M = (R, +, x,0, 1, <). Note that F; is contained in the union
of finitely many families of the form {F,z ) : i <t} where ¢’ only depends on ¢
(since there are only finitely many different polynomials of degree < ¢, up to varying
coefficients, and only finitely many different Boolean combinations of size < t). So
it is enough to show that every such family has finite VC-dimension (by Remark
19).

By the classical result of Tarski, this structure M eliminates quantifiers, and so
definable sets are precisely the semialgebraic ones. In particular, if we are given a
formula of the form ¢ (z,7), for every b € M9l the set ¢ (M,b) is just a union of
at most n, intervals and points, where ng only depends on ¢. As the collection of
all intervals has finite VC-dimension, in view of Remark [£.9] we have that for all
formulas ¢ (x,y) with |z| = 1, F, has finite VC-dimension. By Theorem this
implies that the same is true for all formulas.

Example 4.12. Definable families in stable structures.

The class of stable structures is well studied in model theory, originating from
Morley’s theorem and Shelah’s work on classification theory. See e.g. [I] for more
details. Examples of stable structures:

e (C, x,4,0,1) (definable sets correspond to the constructible sets, i.e. Boolean
combinations of algebraic sets),
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separably closed and differentially closed fields,

arbitrary planar graphs G = (V, E),

abelian groups (viewed as structures in the pure group language (G, -, 1)),
[Z. Sela] non-commutative free groups (in the pure group language).

Example 4.13. [§] Let (G,-, <) be an arbitrary ordered abelian group. Then
definable families of sets have finite VC-dimension. In particular, all definable
families in Presburger arithmetic (Z, +, <) have finite VC-dimension.

Example 4.14. Let (Q,, x,+,0,1) be the field of p-adics. Using the quantifier
elimination result of Macintyre in this setting, one can show that again all definable
families have finite VC-dimension.

4.3. The VC-theorem, s-approximations and e-nets.

Fact 4.15. (Weak law of large numbers) Let (2, B,IP) be a probability space. Let
A CQ be an event and let € > 0 be fized. Then for any n € N we have:

1
>e | < .
= )_ 4ne?

Note that this probability — 0 as n — oco. In particular this means that fixing
an arbitrary error €, we can take n large enough so that with high probability the
measure of A can be determined up to € by picking n points at random and counting
the proportion of them in A.

pn <(w1,...,wn) e

=3 ta ) P (A)

The key result in VC-theory is the theorem of Vapnik and Chervonenkis [20]
demonstrating that a uniform version of the weak law of large numbers holds for
families of events of finite VC-dimension. That is, with high probability sampling
on a sufficiently long random tuple gives a good estimate for the measure of all sets
in the family F simultaneously.

Let us fix some notation. For S € F and (z1,...,2,) € X" we define

Av (z1,...,2n;5) ::%|{1§z’§n:$i€S}|.

Theorem 4.16. (VC-theorem) Let (X, 11) be a finite probability space, and F CP (X)
a family of subsets of X. Then for every € > 0 we have
2

u" <sup [Av (z1,...,2,;S) — p(S)| > 6) < 87r (n)exp <n€) .
SeF 32
Remark 4.17. Note that if VC (F) = d, then 7z (n) = O (n?) and so the right part
converges to 0 as n grows. Thus, as long as the VC-dimension of F is bounded,
starting with F of arbitrary large finite size and an arbitrary measure, we still get
an approximation up to an error ¢ for all sets in F by sampling on a random tuple
of length depending just on d,e.

Corollary 4.18. Let d € N and € > 0 be arbitrary. Then there is some N =
N (d,e) € N such that any set system (X, F) on a finite probability space (X, p)
with VC (F) < d admits an e-approximation of size at most N.

That is, there is a multi-set {x1,...,xn} of elements from X (repetitions are
allowed) such that for all S € F we have

|[Av (z1,...,2n;8) — pu(S)| <e.
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Proof. By Remark [£17} it follows from Theorem [{.16] that for N large enough
(with respect to d and €), with high probability any N-tuple from X works as a e-
approximation (so in particular that is at least one N -tuple with this property). O

Remark 4.19. (1) Note that repetitions among the points 1, ..., z, are neces-
sary — think of a measure on a finite set, giving certain different weights
to different points.

(2) It is known that one can take N = C' % log 1, where C' = C (d) is a constant.

Definition 4.20. Let V be a set, B a b.a. on V and u a f.a.p. measure on B. Let
F be a family of subsets of V' with F C B. As usual, for ¢ > 0 we say that a subset
T CV is an e-net for F if for every F € F we have u(F) > e = FNT # (.

Note that every e-approximation is an e-net. One can get better bounds on the
size of an e-net (|7| < 8d1log?l).

We discuss arbitrary measures (with infinite support) that admit e-approximations.

Definition 4.21. Let V,W be sets with b.a.’s By, By on them, and let u be a
f.a.p. measure on By .

(1) Let F be a family of subsets of V' in By. We say that p is finitely ap-
prozimable on F if for every ¢ > 0 there are py,...,p, € V (possibly with
repetitions) giving an e-approzimation of p on F.

(2) Let R €V x W be such that R, € By for all b € W. We say that p is
fin.app. on R if it is fin.app. on F,, for all m € N, where F,,, is the family
of all subsets of V' given by the Boolean combinations of at most m sets of
the form Ry, b e W.

Remark 4.22. In particular, if p is fin.app. on R, then it is fin.app. on the family
RA = {RyARy : b,/ € W}.

Example 4.23. (1) Any measure p on By with a finite support (i.e. there is
some finite B € By with pu (B) = 1) is fin.app. on By.

(2) Let V =R, let By be the field generated by all intervals in V', and let R
be the family of all intervals. Let p be the 0 — 1 measure on By such that
the measure of a set is 1 if and only if it is unbounded from above. Then
there are no finite e-approximations for y on R, for any € < 1, as any finite
set can be avoided by some unbounded interval of measure 1. Note that
VC(R) < oo. This is not a contradiction with the VC-theorem as p is not
finitely supported.

(3) Let A\, be the Lebesgue measure on the unit cube [0, 1]" in R™. Let M be
an o-minimal structure expanding (R,+, x,0,1). If X C R" is definable
in M, then X N[0,1]" is Lebesgue measurable (for n = 1 this is clear as
every definable subset of R is just a finite union of intervals and points by
o-minimality, and for n > 1 this follows from the o-minimal cell decomposi-
tion). Hence A, induces an f.a.p. measure on the b.a. of definable subsets
of R™. This measure is fin.app. on every definable relation (Exercise! E.g.
for n = 1 and € > 0, we can take {si 1< < %} as an e-approximation
for the family of intervals, etc.).

(4) Similarly, for every prime p, the (additive) Haar measure in Q, normalized
on a compact ball induces a f.a.p. measure on the b.a. of definable subsets
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(which are all measurable by the p-adic cell decomposition), and one can
check that it is fin.app. on every definable relation.

The following example shows that the class of measures finitely approximable on
families of bounded VC-dimension is closed under ultraproducts.

Proposition 4.24. Let (M, :i € N) be L-structures, let B; be a b.a. of definable
subsets of M; and p; an f.a.p. measure on B;. Let R; C M; X Ml’C be definable with
R; (w,c) € B; for all c € MF. Assume that p; is fin.app. on R;, and assume that
VC (R;) < d for some fized d and all i € N. Let U be a non-principal u.f. on N,
M =T[,enMi/U and R =[],y Ri/U. Then p = limy p; is fin.app. on R.

Proof. By Definition we have to show that for every m € N, the family of
all Boolean combinations of at most m fibers of R admits a finite e-approximation.
But by Remark[4.9)the VC-dimension of these family is uniformly bounded in terms
of d, hence replacing R by the corresponding Boolean combination R’ C M; x Mikm
if necessary, it is enough to show that F := {R(M, c):cé€ Mk} admits a finite
g-approximation for every € > 0.

Fixe >0 and 7 € N.

Let F; := {R; (M;,c) : c € MF}. By assumption VC (F;) < d.

By assumption there is some n; € N and some (aﬁ, . 7aili) € M" such that
pi (X) = =370 1x (af) for all X € F;.

Define p! : B; = R by ' (X) := n% E?;l 1x (a;) for any X € B;. Then clearly
w; is a f.a.p. measure on B; supported on a finite set A; := U;“:l {a;'-} and pf (X) ~¢
1; (X) for all X € F;. By the VC-theorem (Theorem [4.18) there is some n = n (d,¢)
and (b,..., b, ) € Af" with 1 <m; < n such that uj (X) ~° - 32" 1x (b}) for
all X € F;. Hence pu; (X) ~% mi Z;’Zl 1x (b;) for all X € F;.

As U is an ultrafilter, there is some S; € U and 1 < m < n such that m; = m for
allz € 5. For1 < j < m, let b; be an element of M defined by b; := (b; 11 € N) JU.
Claim. by,..., by, is a 3e-approximation for p on F := {R(M,c) : c € M*}.

Let ¢ € M* be arbitrary, say ¢ = (¢; : i € N) /U. We have:

(1) exists So € U such that u (R (M,c)) =° p; (R (M;,¢;)) for all i € Sy (by
the definition of the ultralimit measure p),

(2) exists S3 € U such that - z;nzl Lr(m,e) (b)) = = Z;n:l 1R, (M, ,c0) (b;) for
all i € S3 (by Los theorem),

(3) wi (Ri (Mi, c;)) 28 % Z;nzl 1R, (M, 00 (b;) for all i € 7.

As 51N 8> N S5 # 0, we have pu (R (M,c)) &3 L Z;n:l 1r,e) (b5)-
As ¢ > 0 was arbitrary, we can conclude. O

4.4. Canonical products of finitely approximable measures. As before, let
B be a Boolean algebra on a set V, and let 1 be an f.a.p. measure on B.

Definition 4.25. A function f : V — R is B-integrable if for all € > 0 there is a
B-simple function g with |f (z) —g(x)] <eforall z € V.

Remark 4.26. A function f : V — R is B-integrable if and only if for any £ > 0
there are Y7,...,Y,, € B covering V such that for any i € [n] and any ¢,¢’ € Y; we

have |f (¢) — f ()| <e.
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If f is B-integrable and p is a f.a.p. measure on B, then we define

/fdu = lim /gndu,
A% n—oo Jy,

where (gn,),,cy is a sequence of B-simple functions approximating f.

Exercise 4.27. This integral doesn’t depend on the choice of a convergent se-
quence.

Also, for a B-integrable f and a set A € B we define

/A fp = /V Lafdp.

Fact 4.28. [15, Theorem 4.4.13]
(1) If f,g are integrable and c¢,d € R, then cf + dg is integrable and for every

X eB,
/(cf—i—dg)du:c/ fdu+d/ gd.
X b's X

(2) If f is integrable then |f| is integrable and for every X € B,

’/Xdu < [ 1nan

Our aim is, given two fin.app. measures, to define a certain canonical product
measure which is fin.app. and forms a compatible system of measures.

For any set A € By, consider the function hr 4 : W — R given by hp a(b) =
w(Ry N A).

Proposition 4.29. Assume that u is fin.app. on R (or just on R® = {RyARy :
b,b' € W}) and that R, € By for alla € V. Then for any set A € By, the function
hr,a is By -integrable.

Proof. Let € > 0. By assumption we can choose p1,...,p, € V such that
[W(RyARy ) — Av(p1, ... pn; ReARy )| < e
for every b, b’ € W.
For I C [n] let C; C W be theset C;r = {be W:p;, € Ry & i € I} € By.
Clearly the sets Cr,I C [n] cover W and for every I C [n] and b,b’ € C; we have
w(RyARy) < . Hence, for any b,b’ € C; we have

|hR7A(b) — hRyA(b/)| < ,LL(A N (RbARb/)) < M(RbARb/) < €.
By Remark [4.26] the function hr 4 is By -integrable. O

Let now V, W, Z be sets and R C V xW x Z. Assume that Ry = {R ) : (b, ¢) €
W x Z} C By and Ry = {Ra,) : (a,c) € V x Z} C By. Let p be a measure on
By which is fin.app. on R CV x (W x Z), and v a measure on By,. Note that by
assumption and Proposition if F is an arbitrary R-definable subset of V' x W
(i.e. a Boolean combination of R-fibers) and A € By, then the function hg 4 is
By -integrable. And hp a(b) = [, 1p(x,b)du. Hence the double integral

wpa8) = [ ([ 1pte.nan) i

is well defined for any A € By, B € By .
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Let now By «w be the b.a. on V x W generated by By @ By and {R. : c € Z}.
Then we have the following.

Proposition 4.30. (1) There is a unique measure w on By xw whose restric-
tion to By ® By is p X v and such that w(E N (A X B)) = wg(A4, B) for
every R-definable E CV x W, A € By,B € By . We denote this measure
by X v.

(2) If in addition v is fin.app. on R, then p X v is also fin.app. on R and
uX v(E)=vx u(E) for all R-definable sets.

Proof. (1) Tt is easy to see that every set Y in By «w is a finite disjoint union
of sets of the form E; N (A; x B;) where E; is an atom of the Boolean alge-
bra of all R-definable subsets of V x W and A; € By,B; € By. We define
w(¥) = Y wg,(A;,B;). Tt is easy to check that w is well-defined (for all A’ €
By,B' € By and R-definable B/ C V x W, if (Ax B)NnE = (A x B )N E,
then wg(A,B) = wg/(A’,B’)) and is a f.a.p. measure on By .y satisfying the
requirements. Uniqueness is straightforward from the definition of w.

(2) It is enough to show that p x v is fin.app. on the family of all fibers of
any R-definable relation £ C (V x W) x Z. Fix an arbitrary € > 0. Let us take
D1,...Pn € V such that pu(Ep.c) ~° Av(p1,...,0n; Eb) for all (b,c) € W x Z, and
G1,- -, qm € W such that v (E, ) =° Av(q1, ..., Gm, Eq,) for all (a,c) € V x Z.

We claim that the set {(p;, ;) : 1 <i<n,1<j<m} gives a 2e-approximation
for u x v(E,.), for any ¢ € Z. Namely, using linearity of integration, we have

WV(EC):/W (/le (v,w)du) dy ~°

1<i<n,1<j<m
so u X v(E:) ~* Av({(pi,q;) : 1 <i<n,1<j<m};E.).
The fact that p x v(E.) = v x u(E,.) follows as, by the above, for any ¢ > 0 we
have

i=1 j=1
1 m 1 n 1 m
S (1m0 L3 (1m0 -
m 4 n J m 4 Vv J
j=1 i=1 7=1
1 & .
/ —> 1p,.(g) | du=~ (/ 1Ec(v,w)dV)du=
v\m v \Uw

VIXN’(EC)v
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hence p x v(E,) ~* v x p(E,) for arbitrary € > 0. O

It is not hard to see that a product of fin.app. measures satisfies a weak Fubini’s
property.

Corollary 4.31. Let VW be sets, i a f.a.p. measure on By which is fin. app.
on R, v a f.a.p. measure on By . Fore > 0 if u(Ry) < € for alla € W then
(by x vw)(R) < e.

We extend products of fap measures to an arbitrary number of sets.

Definition 4.32. Let Vi,..., V) be sets, R C V; x ... X Vi and assume that for
each i € [k] we have a field B; on V; and a measure p; on B; which is fin.app. on R
(viewed as a binary relation on V; x Vj3)\;). Then, by induction on k, we define a
measure i1 X ... X g = (1 X ... X pp—1) X g on By, X ... x By, (and the order
of integration doesn’t matter by Proposition .

4.5. Measure-theoretic regularity for hypergraphs of finite VC-dimension.

Definition 4.33. (1) Let Vq,...,V; besets, RC Vi x...x Vi and I C [k].
We say that a subset X C Vj is R-definable over a set D C V1 if it is a
finite Boolean combination of sets of the form R, with b € D, and say that
X is R-definable if it is R-definable over Vi ;.

(2) For aset A C Vj x ... x Vi we say that A is Rg-definable if A can be
written as a finite union of sets of the form X; x ... x X}, such that each
X; CV; is R-definable.
In addition for a tuple D = (D1, ..., D) with D; C Vj)\; we say that A is
Rg-definable over D if every X; above is R-definable over D;. For such a
tuple D we use notation | D|| = max{|D,|: i € [k]}.

Proposition 4.34. Let VW, R CV x W be sets, i a f.a.p. measure on V which
is fin.app. on R. Then for any € > 0 there are R-definable subsets Xy,... X, CW
partitioning W such that for everyi € [m] and any a,a’ € X; we have py (RgARy) <
€.

In addition, if the family R = {Rq,: a € W} has VC-dimension at most d then
we can choose D C V of size at most 320al(%)2 such that every X; is R-definable
over D.

Proof. We use the same trick as in the proof of Proposition

Let R® = {R,AR,: a,a’ € W}. Since p is fin.app. on R, there are py,...p, €
V with [(F) — Av(p1,...,pn; F)| < ¢ for any F € RA.

For each IN[n]let X; = {a € W:p, € R, & i € I}. It is easy to see that the
sets X1,I C [n] partition W, every X; is R-definable and for every I C [n] and
a,a’ € X1 we have u(R,AR.) < e.

Assume in addition that R is a VC-family with VC-dimension at most d. As
above we choose p1,...p, € V with

for any F € RA.
Let w be a measure on By given by w(X) = Av(p1,...,pn; X). Since R has VC-
dimension at most d, the family R* had dimension at most 10d by Remark and
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by Corollary we can choose an £/2-net D for R® and w with |D| < 80d2 log 2.
Clearly
2
80d2 log 2 < 80d(2)” = 320d(1)>.
For each IND let X; ={a € W: R, ND = I}. It is easy to see that the sets

X1,I C D, partition W and every X; is R-definable over D. Let I C D and a,a’ €
Xr. Then R, N D = Ry N D, hence w(R,AR, ) <e/2, and u(R,ARy ) <e. O

Definition 4.35. For sets V,...,V; and aset R C Vj x...x Vi we say that R has
VC-dimension at most d if for every I C [k] the family {R4: a € Vj\s} of subsets
of Vi has VC-dimension at most d.

Theorem 4.36. Let Vi,... Vi and R CV; x ... x Vg be sets, and pq, ..., 1 f.a.p.
measures on Vi,..., Vi, respectively, which are all fin. app. on R. Then for every
€ > 0 there is an Rg-definable A C Vi x ... x Vj, with

(1 X ... X i) (RAA) < e.

In addition, if R has VC-dimension at most d (see Definition|4.39]) then we can

choose A to be Rg-definable over some D with || D|| < C’kvd(%)z Pt d, where C q
is a constant that depends on k and d only.

Remark 4.37. Returning to our terminology from Section [3.2] this means in par-
ticular that R can be approximated up to measure € by a set in Bj),; — a finite
union of boxes obtained by products of 1-ary sets.

Proof. We proceed by induction on k.

The case k = 2. Let V;,V, and R C V; x V, be given. Using Corollary
we can find R-definable sets X7, ... X,, partitioning V5 such that for every i € [m)]
and any a,a’ € X; we have pu;(R,ARy) < €.

For each i € [m] we pick some a; € X; and let A = ;¢(,,,) Ra, X Xi. Obviously A
is Rg-definable. It is not hard to see that for every a € W we have pu1 (R,AA,) < &,
hence, by Lemma [4.31] (p1 X v2)(RAA) <e.

Assume in addition that R has VC-dimension at most d. Then by Corollary
we can assume that for some Dy C Vi with |Dsy| < 320d(%)2 every X, is
R-definable over Dsy. Let Dy = {ai,...,am}, and D = Dy, D3). Obviously A
is Rg-definable over D. By Sauer-Shelah lemma (Fact , m < Cg4|D3|?, hence
|Dy| < Cq(320d)%(L)2. And we can take Co g = Cq(320d)".

Inductive step £+ 1. Let Vi,...,Vii1 and RC Vj X ... X V41 be given.

Viewing Vi x ... X Vi1 as Vig X Vi1 and using the case of k = 2 we obtain
R-definable X7, ... X,, partitioning V., and points a; € X;, ¢ € [m], such that for
the set A" = ;¢ () Ras X Xi we have (u1 x ... X ppi1)(RAA) <e/2.

For each i € [m] let R* = R,,. It is an R-definable subset of V; x ... x Vj.
It is easy to see that each R’ has VC-dimension at most d. Applying induction
hypothesis to each R’ we obtain R%-definable sets A; C V4 x ... x Vj, such that
(ua % oo ) (RPAA;) < /2. Let A = Uicpny Ai X Xi. It is an Rg-definable set
and using Lemma [4.31] it is not hard to see that (u1 X ... X pq1)(A’AA) < &/2,
hence (p1 X ... X pgpy1)(RAA) < e, as required.

Assume in addition that R has VC-dimension at most d. As in the case k = 2
we can assume that every X; is R-definable over Dyy1 C Vi,...,V} with |Dgiq| <
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320d(§)2 and also assume that
d
m < Cy|Dyy1|* < Cy [320d(%)2} = Cd(1280d)d(é)2d.

Applying induction hypotheses we can assume that each A; above is Rf@—deﬁnable
over D' = (Di,...Dj) with | D] < Cp.a(2)2k=D4 where D C [icpp gy Vi

g

For each i € [m] and j € [k] let D} = {(c,a;): ¢ € Di}, D; = Uiepm Dj» and

—

D = (Dq,...,Dgy1). B
It is not hard to see that A above is R-definable over D and

1]l < mCia(2)*" V" < Ca1280d)% (1)* 220k (1) 2000 -

€

= Crs1,a(L)?M.

O

Now we apply this product measure decomposition result to deduce a strong
regularity lemma.

Definition 4.38. (1) For ak-hypergraph E C Vix...xVyand A1 CVi,..., A C

Vi we will denote by E(A4,..., Ay) theset E(Ay,...,Ar) = ENA; x...X
Ay
(2) By a rectangular partition we mean a k-tuple P = (P1,...,Pk) where each
P, is a finite partition of V;. For a rectangular partition P = (P1,...,Pk)
we define ||P|| = max{|P;|: i € [k]}, and for a set X C V; x ... x Vj, we
write X € P if X = X1 X ... x X}, for some X; € P;,i € [k]. We will also
write ¥ C P to indicate that ¥ consists of subsets X C Vi x...xV, with
XeP.
(3) For A C V; x...x V, and a rectangular partition P = (Py,...,Py), say
that A is compatible with P if for any X € P either X C Aor XN A= .
In other words, A is a finite union of sets X € P.
(4) A rectangular partition P is E-definable (over D = (Dy,...,Dy) as in
Definition if for each i € [k], every X € P; is E-definable over D,.
(5) Let B; be a bool. algebra on V;, and p; a f.a.p. measures on B; which is
fin.app. on E, for all ¢ € [k]. Let g := pg X ... X pug. Given e > 0, a
definable rectangular partition P is e-reqular with 0 — 1-densities if there is
¥ C P such that
> ouX) <e,
Xex
and for every X; x ... x X, € P\ ¥ either
p(Y1 X oo x V) —p(BE(Y1, ..., V) <en(Xy x ... x Xg)
for all sets Y; € B;, i =1,...,k; or
M(E(Yl, . ,Yk)) < EM(Xl X ... X Xk)
for all sets Y; € B;,i=1,...,k.
The next proposition demonstrates how existence of an approximation by rectan-
gular sets (Theorem for the product measure can be used to obtain a regular
partition.
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Proposition 4.39. (in the context of Deﬁm’tion Let P be a definable rectan-
gular partition of Vi x ... x Vi. If there is A C Vi x ... x Vi, an Eg-definable set
compatible with P with n(AAE) < €2, then P is e-reqular with 0 — 1-densities.

Proof. Let
Y ={X eP: u(XN(AAE)) > epu(X)}.
Since (AAFE) < &2 and p is finitely additive we obtain that

> owx)<e

Xex
Let X = X; x...x X € P\ %. We have
w(X N(AAE)) < ep(X).

Since A is compatible with P either X C A or X N A = (.
Assume first X C A. Let V; C X; be fromB;,i = 1,...,k, and let Y =
Y1 x ... x Y. Since Y C X, by monotonicity of ;1 we have

w(Y N (AAE)) < ep(X).

AsY C A we have Y N (AAE) =Y \ E(Y1,...,Y)). Since E(Y1,...,Y;) CY we
also have
(Y \ BV, Y2) = plY) = p(B(Ya, ., Vi),
hence
wYix ... xYy) = p(E(Y1, .., Ye)) <eu(Xy x...x Xg).
If X N A = () similar arguments show that

wEY, .. V) <ep(Xy,..., Xi).
for all Y; C X; from B;,i =1,... k. [l

Combining this observation with Theorem [.36] we obtain a regularity lemma
for hypergraphs of finite VC dimension.

Theorem 4.40. Let Vy,..., Vi and E C Vi X ... x Vi be given, and let u1, ..., g
be measures on Vi, ..., Vi which are all fin.app. on E. Let u = puy X ... X ug.
For any € > 0 there is an E-definable e-regular partition P with 0 — 1-densities.
In addition, if E has VC dimension at most d we can choose P with |P| <

Ca(Cra)? (£) 7"
770

, where Cq and C}, q are constants from Fact and Theorem

Proof. Using Theorem there is an Eg-definable A with u(AAE) < &%, Say
A = Ujem) Al x ... x A where each A CV; is E-definable. O

For each I € [k] let P; be the set of all atoms in the Boolean algebra generated
by Al,..., A, Obviously each P; consists of E-definable sets partitioning V;, and
A is compatible with P = (P1,...,Pk). By Proposition P is e-regular with
0 — 1-densities.

Assume in addition that E has VC-dimension at most d. Then using Theorem
we can assume that A is Eg-definable over D = (Dy,..., D) with |D;| <

C’kvd(l)Z(kfl)d for ¢ € [k]. For each i € [k] let P; be the set of all atoms in

€

the Boolean algebra generated by FE-definable over D; subsets of V;. Obviously
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each P; consists of E-definable subsets partitioning V; and A is compatible with
P = (Py,...,Px). Also, by Sauer-Shelah (Fact ,

d 2
|Pi| < CalDi|* < Cy (Ck,d(%)%kfl)d) = Ca(Cra)(2)?

e

Remark 4.41. In the case when V] is finite the above theorem without the VC part
is trivial, since we can take P; to be the set of all atoms in the Boolean algebra of
all E-definable subsets of V;.

Let E C Vi,..., Vi be a finite k-hypergraph. For each ¢ € [k] let p; be the
counting measure on V;, ie. u;(X) = % and g be the counting measure on
Vix...xVg. Then all y; and p are fin.app. measures with g = pq X ... X ug.
Hence all the results of the previous section can be applied to finite k-hypergraphs

with respect to counting measures.

Corollary 4.42. Assume E C Vi x ... x V}, has VC-dimension at most d.

Then there are partitions V; = Vi1 U --- UV, for some M < c(é)cl, where
c=c(k,d) and ' = ¢ (k,d), numbers 6; € {0,1} for i€ [M])*, and an exceptional
set ¥ C [M]* such that

Z Viiy| - Vi < e[Vixooox Vi

and for each i = (iy,...,i) € [M]* \ © we have
[E(Ay, . Ap)l = 6 Aa| -+ JART | < e[Via |- (Vi
fOT‘ all A1 Q Vl,i1>~ .. 7Ak Q Vk,ik-

Exercise 4.43. Formulate and show a converse (that this regularity lemma implies
finiteness of the VC-dimension of the hypergraph).

4.6. References. *** TBA

5. REGULARITY LEMMA FOR STABLE HYPERGRAPHS

We work in the same setting as before. Let the sets Vi,...,Vyand R C V; ... X
... Vi be given, let B; be a b.a. on V;, and let y; be a f.a.p. measure on B;. Assume
moreover that for every i € [k], R, € B; for all b € Vi (4}

Definition 5.1. (1) A binary relation R(x,y) C V x W is d-stable if there is
no tree of parameters (b, : 7 € 2<¢) in W such that for any n € 2% there
is some a,, € V such that a,, € Ry, <= v —~ 1 I (where < is the tree
order).

(2) A relation R C Vj X ... x Vj is d-stable if for every I C [k], viewed as a
binary relation on Vi x Viy)\s it is d-stable.
(3) A relation R is stable if it is d-stable for some d.

Exercise 5.2. (1) Alternatively, stability of a relation can be defined in terms
of the so called order property. Namely, R C V x W has the d-order
property if there are some elements a; in V and b; in W, i=1,...,d, such
that a; € Ry, <= i <jforall 1 <i,j <d. Show that R is stable (in the
sense of Definition if and only if it does not have the d-order property
for some d.
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(2) Show that if R is d-stable, then VC (R) < d.

Lemma 5.3. Let R be a stable relation. Then any measure u; on B; is fin.app. on

R.

Proof. Fix i € [k] and assume that R is d-stable.

Claim 1. For any € > 0 there is some m = m(e, E) and some 0-1 measures
91,...,0m on B; (possibly with repetitions) such that u;(R.) ~° % Z;n:l 3;(R.) for
all c € V[k]\{i}-

Proof. By Exercise VC(R) < d. Then the claim follows from the VC-
theorem applied on the compact space of 0-1 measures on B;. See [0, Lemma 4.8]
for the details (*** TBA).

Claim 2. Every 0 — 1 measure § on B; is fin.app. on F.

Proof. This is a straightforward consequence of the explicit form of the defin-
ability of types in local stability. See e.g. the proof of [14] Lemma 2.2]: identifying
our measure ¢ restricted to E with a complete E-type, an e-approximation of § on
FE is given by the cy,..., ¢, constructed in that proof, for any m large enough so
that &£ < e (*** TBA).

Now, let € > 0 be arbitrary, and let d1,...,d,, be as given by Claim 1. By Claim
2, let A; be a multiset in V; giving an e- approxnnatlon for 6;. It is straightforward
to Verlfy that A = Um Aj; is a 2e-approximation for ;. O

In view of this lemma, for I = {iy,...,i,} C [k] we have a semi-direct product
measure iy = fi;, X ... X p; on By = B;, x ... x B, (see Definition 4.32]) which is
fin.app. on R (Proposition 4.30)).

Definition 5.4. A set A € By is e-good if for any b € Vi1, either ur(AN Ry) <
E,U,I(A) or ,U,I(A n Rb) > (1 — 6)/1](/1).

Remark 5.5. Notice that if a set is e-good then it has measure greater than 0.
Lemma 5.6. Assume that )\ is fin.app. on R. For any e > 0, consider the set
A= {a eVr: H[k]\I(Ra) < 6}.

Then there is an R-definable set A’ 2 A such that pp)1(Ra) < 2¢ for all a € A’.

Proof. Let by, ...,b, € Vig\r be such that ppr(Ra) = ~3 Av(by,...,by; Ry) for all
a€Vy. Let J={JC[n]: ‘J‘ < 3e},and let A" =J,c; Mies By, VNjgs Be, )
It is easy to check that A’ satlsﬁes the requirements. O

Lemma 5.7. Fiz some I C [k] and some J C [k]\ I. Let B € By be an e-good
set, and let A € By and ¢ € Vi (ru) be arbitrary, such that both A and B are of
positive measure. Then (by Deﬁm’tion A is a disjoint union of the sets

A%, = {a€ A: py(Rae 01 B) < 21 (B)}
and
Ap.={a€A:pj(ReenNB) > (1—e)us(B)}.
Assume that e < ;. Then A%, Ap . € Br.
Proof. Indeed, let p1} be the restriction of pur to A and let 4/, be the restriction of
wy to B. As R is stable, by Lemma both p%, p/; are fin.app. on R. Hence, by

Lemma applied to pf, p'; we can find some R-definable Aj 2 A% , A} D Ap
such that p/;(Rg,c) < 2¢ for all a € A}y and p/;(R,,c) > (1 —2¢) for all a € A} (here
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we have applied it to the complement —R, which is also d-stable). As e < i, it

follows that in fact A% . = AjN A, Ap .= A1 N A. O
In particular, it makes sense to speak of the pj-measure of A% ., AL .

Definition 5.8. Let 0 < & < I be arbitrary, and let I C [k]. We say that a set
A € By is e-excellent if it is e-good and for every J C [k] \ I, every e-good B € B
and every ¢ € Vi (zuy), either ur(A% ) < epr(A) or pr(Ap ) < epr(A) (in the
notation from Lemma .

Lemma 5.9. Let RC Vy x ... x Vi be d-stable, 1 < n <k and let 0 < e < 2%
be arbitrary. Assume that A € By, and pu,(A) > 0. Then there is an e-excellent
R-definable set A’ € B, with p,(A' N A) > e, (A).

Proof. We will need the following claim.

Claim. Assume that 0 < € < % and A € B,, is not e-excellent. Then there are
disjoint A%, A C A with A; € B,, and pu(A;) > eu(A) for i € {0,1}, and such that
for any finite S© C A%, 51 C A! with [S°|+|S*| < L there is some ¢ € Vjj)\ (n} such
that a € R, for all a € S' and a ¢ R, for all a € S°.

Proof. If A is not e-good, there is some ¢ € Vjg)\(n} such that p,(A N R.) >
etn(A) and p, (AN =R.) > epn(A). We let A = AN R, and A° = AN (=R,).

If A is e-good, as it is not e-excellent, there are some J C [k] \ {n}, some set
B € B which is e-good, and some ¢ € Vju\(fnjus) such that A is a disjoint
union of the sets A° := A%’C/,A1 = A}_L;,C, (in the notation from Lemma and
pn(AY) > ep,(A) for both t € {0,1}. Now given S, S* as in the claim, we have
pr(BN Rye) < euy(B) for all a € S° and py(B N —(Ry)) < epy(B) for all

a€ S Let
B'=Bn(|]J RaeU |J ~(Rac))
a€s? a€sSt
As |89+ (St < L, it follows that s (B’) < Leps(B) < ps(B). In particular there
is some b’ € B\ B’, and taking ¢ =/ ~ ¢ satisfies the claim.

Assume now that the conclusion of the lemma fails. By induction we choose
sets (A, : n € 25%) in B,, such that Ay = A and given n € 2<¢, we take A, o =
(A,)°, Ay~ := (A,)! as given by the claim applied to A,. For every n € 2%, pick
some a, € A, (possible as un(A4,) > %y, (A) > 0). For every v € 2<% there is
some ¢, € Vi (n} such that a, € R., if and only if v ~ 1 < 7 — which gives
contradiction to the d-stability of R. Namely we can take ¢ given by the claim for
S0 ={a, :ne2 v ~0<n}and S' = {a, : n € 24,y ~ 1 < n} (note that
1S9 +15% < 2% < 1 by assumption). O

Lemma 5.10. Let R C V] x ... x Vi be d-stable, and let 0 < € < 2%, be arbitrary.
For any n € [k|, there is a partition of V,, into e-excellent sets from B, and the
size of the partition can be bounded by a polynomial of degree d+ 1 in %

Proof. Repeatedly applying Lemma we let A,,41 be an S-excellent subset
of By, =V, \ (Ulgigm A;) with pn (A1) > (%)d,un(Bm). Then pn(Bmt1) <
fin(Bm) — (%)dﬂn(Bm) <(1- (%)d)ﬂn(Bm)v hence fin (Bm) < (1— (%)d)m_l for all
m. Thus pin(Bm) < §un(Ar) after m = % steps. Letting A} = A; U B,,,
it is easy to check that A} is an e-excellent set, and A}, As, ..., A, is a partition
of V,.
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Finally, for the size of the partition we have an estimate
(d+1)log2 1 c 1
=—— 2 2 Jog(-) < ———————1In(~
o1 (39 &) = " "

for some constant ¢ € N depending just on d. And as —In(1 — z) > z for all z, this

gives
end 1 1 d+1
m<c (7) In () < ()
2 € €
for some ¢’ = ¢/(d) € N. O

Finally we can use the partition in Lemma to obtain a regular partition for
RCVix...xV..

Lemma 5.11. If A C V,, is e-excellent and B C V,_1) is e-good then B x A is
2e-good.

Proof. Let ¢ € Vig)\[n) be arbitrary. As B is e-good and A is e-excellent, by Defini-
tion \ref{def: epsilon excellent} we have A = A% U Aj . and either u,(A% ) <
epn(A) or Mn(A}B7C) < gptn(A). Assume we are in the first case. Then, using the
definition of yp, and Lemma [£.31] we have

(B x A0 Fe) = [ (it (B 0 B)) i >

/ (M[n—l] (Ra,c N B)) dpy > / (1 —&)pn—1)(B)dpn >
Al

1
B,c AB,L'

(1= &)?tn(A)ppn—1)(B) > (1 = 26) ) (A X B).
Similarly, in the second case we obtain that g, ((B x A)NR.) < 2epp,)(Ax B). O

Theorem 5.12. Let R C Vi x ... x Vi be d-stable, and let 0 < € < 2—1d be arbitrary.

Then there is an R-definable e-regular partition P of Vi x...xVy with 0—1-densities
(see Deﬁnition without any bad k-tuples in the partition (i.e. ¥ =0) and such
that the size of the partition ||P|| is bounded by a polynomial of degree d + 1 in %

Proof. For each n < k, let P, be a partition of V;, into sFr-excellent sets as
given by Lemma and let P = {X1 x...x Xy : X, € P,}. We claim that
P, is e-regular with ¥ = (. Indeed, let X = X; x ... x X, € P be arbitrary,
and let Y = Y7 x ... x Y, where Y,, C X,,,Y,, € B,, are arbitrary. Let X' :=
X1 X ... x X1, Y :=Y; X ... x Yy_1. Applying Lemma [5.11] k times, the set X’
is 5-good, and X, is §-excellent. Then, by Definition \ref{def: epsilon excellent},
X, is a disjoint union of the sets (Xi)%/, (Xk)%/ € Br and p((Xi)%/) < 5u0(Xk)
for one of t € {0,1}. Let Y)Y := (X3)% NYy and V! := (Xj)L, N Yy We have

i (R0Y) = [ oy (Ren Y )0,
Yi

As Yy, is a disjoint union of Y2, Y;! and u(Y)!) < Su(Xy) for some t € {0,1}, we

have

(R0 Y) = [ e (Re 0 Y ()] <

t
Yy

1>
S (Xe)ppr—1y (Y1 x .. Ygoq) <

5 [L[k](Xl X...XXk)

Do ™
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for some t € {0,1}.
Assume that ¢ = 0. Then for all ¢ € Y)? we have pu,_1j(Rc. N X') < 5pp—1(X7).
Hence

[ (R0 (o) < )

k

€

€
2#[1971]()(’) < Shp (XX x X,

and so u[k](R nY) < EM[K] (X).
If t = 1, applying the same argument to =R we obtain up (~RNY) < eppy (X)),
hence [pp (=RNY) — ppg (V)| < epppy (X). O

References. Regularity lemma for stable graphs was proved in \cite{ms} for
counting measures. Later, \cite{malliaris2016stable} provides a proof for gen-
eral measures. However, the proof in \cite{malliaris2016stable} does not give any
bounds on the size of the partition. Here we present a proof from *** combining
these two approaches and prove a regularity lemma for stable hypergraphs rela-
tively to arbitrary measures, bounding the size of the partition by a polynomial in
$\frac{1}{\varepsilon}$.

6. TAME HYPERGRAPH REMOVAL

Fact 6.1. (Conant) Let (Z,+,0, A) be stable, with A C N. Then A doesn’t contain
an infinite arithmetic progression.

Problem 6.2. Can still contain arbitrary long finite arithmetic progressions?
Fact 6.3. What about the NIP case?

Remark 6.4. (Z, Primes) is simple by Kaplan-Shelah. Does it mean that there is
no improved simple regularity lemma? Can Gower’s lower bound be carried out
here?

6.1. Graph removal in stable/NIP. seems we get § = &’ for some t = t (VC (F)).

By Ricardo Bello Aguirre, [], . Z/p*Z/U is NIP. Does it imply anything for
Szemeredi’s theorem on progressions? Maybe by Chebycheff’s density of primes,
gives smth...

In fact, maybe only use additive structure? Then the ultraproduct is just an
abelian group? Hence stable.

Brr, definition uses A.

Hence, assume (Z, +, A) is stable/NIP. Then hopefully something happens. If A
is definable in an NIP exapnsion of Z with order, then all these initial pieces are
uniformly definable, so the ultraproduct is NIP as well?
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